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Deep Spatial Transformation for Pose-Guided
Person Image Generation and Animation

Yurui Ren, Ge Li, Shan Liu, and Thomas H. Li

Abstract—Pose-guided person image generation and animation
aim to transform a source person image to target poses. These
tasks require spatial manipulation of source data. However,
Convolutional Neural Networks are limited by the lack of
ability to spatially transform the inputs. In this paper, we
propose a differentiable global-flow local-attention framework
to reassemble the inputs at the feature level. This framework
first estimates global flow fields between sources and targets.
Then, corresponding local source feature patches are sampled
with content-aware local attention coefficients. We show that
our framework can spatially transform the inputs in an efficient
manner. Meanwhile, we further model the temporal consistency
for the person image animation task to generate coherent videos.
The experiment results of both image generation and animation
tasks demonstrate the superiority of our model. Besides, addi-
tional results of novel view synthesis and face image animation
show that our model is applicable to other tasks requiring spatial
transformation. The source code of our project is available at
https://github.com/RenYurui/Global-Flow-Local-Attention.

Index Terms—Image Spatial Transformation, Image Anima-
tion, Pose-guided Image Generation.

I. INTRODUCTION

IN this paper, we deal with the conditional generation task
where the target images are the spatial deformation versions

of the source images. Such deformation can be caused by
object motions or viewpoint changes. This task is the core of
many image/video generation problems. For example, pose-
guided person image generation [1], [2], [3], [4] transforms
a person image from a source pose to a target pose while
retaining the source appearance details. The corresponding
pose-guided image animation task [5], [6], [7], [8] further
models the temporal consistency and generates a video from a
still source image according to a driving target pose sequence.
As illustrated in Figure 1, these tasks can be tackled by
reasonably reassembling the input data in the spatial domain.

However, Convolutional Neural Networks (CNNs) lack the
ability to spatially transform the input features in a parameter
efficient manner. One important property of CNNs is the
equivariance to transformation [9], which means that if the
input spatially shifts, then the output shifts in the same way.
This property can benefit tasks requiring reasoning about
images such as segmentation [10], [11], detection [12], etc.
However, it limits the networks by the lack of ability to
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Fig. 1. Illustration of pose-guided person image generation and animation. We
show the person image generation task in the first row. For each image pair,
the left image is the generated result of our model, while the right image is
the input source image. The arrows indicate the data spatial transformation.
The second and third rows contain results of the person image animation task.
The leftmost image of each row is the source image and the others are the
generated results of our model.

deal with the deformable-object generation task which re-
quires spatially rearranging the input data. In order to enable
spatial transformation capabilities of CNNs, Spatial Trans-
former Networks (STN) [13] introduces a Spatial Transformer
module to standard neural networks. This module regresses
transformation parameters and warps the input features using
a global affine transformation. However, the global affine
transformation is not sufficient in representing the complex
deformations of non-rigid objects.

The attention mechanism [14], [15] is able to transform
information beyond local regions. It gives networks the ability
to build long-term dependencies by allowing networks to use
non-local features. It has emerged as an effective technique for
many tasks such as natural language processing [14], image
recognition [16], [17], and image generation [15]. However,
for spatial transformation tasks in which target images are
the deformation results of source images, each output position
has a clear one-to-one relationship with the source position.
Therefore, each output feature is only related to a local region
of the source features. In other words, the attention coefficient
matrix between the source and target should be a sparse matrix
instead of a dense matrix.

Flow-based operation forces the attention coefficient matrix
to be a sparse matrix by sampling a very local source patch
for each output position. It predicts 2D coordinate offsets for
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the target features specifying the sampling source positions.
However, networks struggle to find reasonable sampling lo-
cations when warping the inputs at the feature level [18],
[19]. Possible explanations for this phenomenon are that:
(1) The input features and flow fields change simultaneously
during the training stage. Their parameter update processes
are mutually constrained, which means that the input features
cannot obtain reasonable gradients without correct flow fields
and vice versa. (2) The commonly used Bilinear sampling
method provides poor gradient propagation [20], [21]; In
order to obtain meaningful flow fields, some flow-based meth-
ods [22], [23] warp input data at the pixel level. However,
this operation limits the networks to be unable to generate
new content. Meanwhile, large motions are difficult to be
extracted due to the requirement of generating full-resolution
flow fields [24]. Some methods warp the input at the feature
level by pre-calculating the flow fields using additional 3D
models [8] or generate dense flow fields from sparse key point
representation [7]. However, they do not solve the problems
in a straightforward manner, which leads to an insufficient
transformation representation capability.

In this paper, we propose a differentiable Global-Flow
Local-Attention (GFLA) framework to solve the problems.
Our framework can enable CNNs to reasonably sample and
reassemble source features without using any labeled flow
fields. The architecture of our GFLA framework can be found
in Figure 2. Specifically, our network can be divided into two
parts: Global Flow Field Estimator and Local Neural Texture
Renderer. The Global Flow Field Estimator is responsible for
extracting the long-term dependencies between sources and
targets. It estimates flow fields that assign a local source
feature patch for each target position. The Local Neural
Texture Renderer uses the extracted flow fields to sample the
vivid source neural textures. In order to warp sources at the
feature level, we propose several targeted solutions to deal
with the analyzed problems. First, a Sampling Correctness loss
is proposed to constrain flow fields to sample semantically
similar regions. This loss helps with the convergence by
providing flow fields with additional gradients that are not
related to the input source features. Then, a content-aware
sampling method is proposed to avoid the poor gradient
propagation of the Bilinear sampling. Experiments show that
our framework is able to spatially transform the information
in an efficient manner. Ablation studies demonstrate that the
proposed improvements are helpful for the convergence.

The image-based pose transformation can be further ex-
tended for the pose animation task by coherently rendering
an input skeleton video. However, most existing models [7],
[8], [6], [25] directly apply image transformation methods for
this task and generate each video frame independently. This
operation does not take the correlations of adjacent frames
into consideration, which leads to temporally inconsistent
results. In order to obtain coherent results, we make additional
efforts to model the temporal dynamics. We notice that the
input skeleton sequences extracted by popular pose estimation
models [26], [27] are always inconsistent. Since these models
predict result poses in an image-based manner and do not
consider the temporal information of videos, obvious noise can

be observed in their results. Therefore, we propose a Motion
Extraction Network to extract clean skeleton sequences from
the corresponding noise data. Meanwhile, we improve our
GFLA model to generate video clips in a recurrent manner. It
allows our model to explicitly extract the correlations between
adjacent frames. Ablation studies show that these methods can
efficiently improve the final results.

We compare our model with several state-of-the-art methods
over both pose-guided image generation and animation tasks.
The subjective and objective experiments demonstrate the su-
periority of our model. Besides, we show that our model is not
limited to generating person images. Additional experiments
are conducted over other tasks requiring spatial transformation
manipulation including novel view synthesis and face image
animation. The results show the versatility of our module. The
main contributions of our paper can be summarized as:
• A GFLA model is proposed for deep spatial transformation.

Experiments on the pose-guided person image generation
task show that our model is able to spatially transform the
source neural textures in an efficient manner.

• The temporal consistency is further modeled for the person
image animation task. Experiments demonstrate that our
simple yet efficient improvements can help the model in
generating coherent results.

• We show the versatility of our model. Additional experi-
ments on novel view synthesis and face image animation
demonstrate that our model can be flexibly applied to other
tasks requiring spatial transformation.
A preliminary version of our work has been presented

in [19]. In this journal article, we improve our work from the
following aspects: (1) We present more in-depth analyses of
our GFLA model including a more extensive ablation study to
evaluate the efficacy of the components and a more thorough
analysis to explain the model performance. (2) We extent our
model to tackle the person image animation task. A Motion
Extraction Network is proposed to extract clean skeletons
from noise inputs. Meanwhile, a sequential GFLA model is
presented to model the correlations of the adjacent frames. (3)
We provide comprehensive ablation studies and comparison
experiments to evaluate the efficacy of our animation model.

II. RELATED WORK

Pose-guided Person Image Generation. An overview of
current monocular state-of-the-art pose-guided person image
generation approaches is given in Table I. We discuss these
methods in detail here. An early attempt [1] performs this task
with a two-stage network. It first generates a coarse image with
the target pose and then refines the result in an adversarial way.
Esser et al. [28] propose to disentangle the appearance and
pose of person images. However, they ignore the spatial dis-
tribution of the original appearance, which limits the network
to generate complex textures. Siarohin et al. [2] propose that
efficient deformation operations are essential for reconstruct-
ing realistic results. They assume that the complex deformation
between sources and targets can be well approximated by a
set of local affine transformations (e.g. arms and legs etc.).
A deformable skip connection module is introduced in their
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Deformation
Type

Flow Field
Label

For Specific
Subject

Temporal
Coherence

G
en

er
at

io
n

Esser et al. [28] - - N N
Siarohin et al. [2] Multi-Affine Trans - N N

Zhu et al. [4] Progressive Attn - N N
Han et al. [29] Pixel Flow N N N
Li et al. [30] Feature Flow Y N N

Ours Feature Flow N N N

A
ni

m
at

io
n

Wang et al. [31] Pixel Flow Y Y Y
Chan et al. [32] - - Y Y

Liu et al. [8] Feature Flow Y N N
Siarohin et al. [6] Feature Flow N N N

Wang et al. [5] Pixel Flow Y N Y
Ours-Animation Feature Flow N N Y

TABLE I. Comparison of the state-of-the-art pose-guided person image
generation and animation methods. Methods are compared from four aspects.
What deformation module does the method use; Whether the flow field labels
are required for training or inference; Is the model trained for a specific
subject; Whether temporal coherence is explicitly enforced during training.
More details can be found in Section II

paper to spatially transform image textures. However, the pre-
defined transformation components limit the application of this
method. Zhu et al. [4] propose a more flexible method by
using a progressive attention module. However, information
may be lost during multiple transfers, which may result in
blurry details. Han et al. [29] propose a method using flow-
based operation for information transform. However, to ease
the optimization, they warp the inputs at the pixel level, which
means that further refinement networks are required to fill the
holes of occlusion contents. Li et al. [30] warp the inputs
at the feature level, which enables the network to generate
occluded contents. But their method requires additional 3D
human models to calculate the ground-truth flow field labels.
Our model does not require any supplementary information
and obtains accurate flow fields in a self-supervised manner.
Pose-guided Person Image Animation. Taking advantage
of the generation capabilities of CNNs, many papers [31],
[32], [33] deal with this task based on conditional generative
adversarial networks (CGANs). Their key idea is to train a
mapping function to generate realistic images by mimicking
the distribution of training sets. However, as summarized in
Table I, these methods are trained to generate specific subjects
i.e. new models are required to be trained when animating new
content. To deal with this problem, Liu et al. [8] propose to
extract flow fields from predicted 3D body meshes and use a
liquid warping module to transform source features. However,
the performance of this model is limited by the accuracy
of the 3D human mesh prediction. Paper [25] calculates the
dense warp grids according to the UV coordinates extracted by
Densepose [34]. Again, it relies on accurate UV coordinates
to generate realistic images. Some methods predict the dense
flow fields from sparse key points movements. Paper [7] and
paper [6] use zeroth-order and first-order Taylor expansions
to approximate the complex transformations using a set of
sparse trajectories respectively. However, these methods do
not explicitly model the video temporal coherence, which
may lead to inconsistent movements. Wang et al. [5] propose
a sequential generator to model the correlations between
adjacent frames and generate coherent videos. Combining the
advantages of the previous works, our animation model can
efficiently transform the source neural textures and generate

coherent results.
Sparse Attention in Image Generation. The attention mech-
anism [14] enables networks to model long-term spatial de-
pendencies. It has emerged as a powerful technique to improve
the performance of the image generation tasks [15], [35].
However, the standard dense attention module is computa-
tionally inefficient. Meanwhile, the dense connection affects
networks to benefit from the image locality [36]. To mitigate
these limitations, paper [37] introduces Sparse Transformers
which separate the full attention operation across several steps
of attention. For each step, only a subset of input positions
is attended for calculation. Sparse Transformers attain better
performance than dense attention with significantly fewer
operations. Daras et al. [36] propose that local sparse attention
kernels introduced in Sparse Transformers are mainly designed
for one-dimensional data. They introduce a new local sparse
attention layer that preserves two-dimensional image locality
and achieves better performance. Instead of separating the
dense attention, some methods [38], [39] achieve sparse at-
tention by controlling the sharpness of the softmax function.
Our GFLA model can be seen as a type of sparse attention
module, where only the flowed local patches are used for the
attention coefficient calculation.

III. GLOBAL-FLOW LOCAL-ATTENTION
FOR PERSON IMAGE GENERATION

For the pose-guided person image generation task, target
images are the deformation versions of source images. There-
fore, target images can be generated by spatially transforming
the source images. In this section, we describe a GFLA model
to efficiently warp and reassemble source neural textures. The
architecture of our model can be found in Figure 2. It can
be divided into two modules: Global Flow Field Estimator F
and Local Neural Texture Renderer G. The Global Flow Field
Estimator is responsible for estimating the global motions
between sources and targets. Flow fields w and occlusion
masks m are estimated by this module. The Local Neural
Texture Renderer renders the target images with vivid source
features using the local attention blocks. We describe the
details of these modules in the following subsections. Please
note that to simplify the notations, we describe the network
with a single local attention block. As shown in Figure 2,
our model can be extended to use multiple attention blocks at
different scales.

A. Global Flow Field Estimator

We use the 18-channel heat map that encodes the locations
of 18 joints of a human body as the structure guidance.
Following the previous works [1], [2], [4], the human body
joints are detected by the Human Pose Estimator [40]. Let ps
and pt denote the structure guidance of the source image xs
and the target image xt respectively. The Global Flow Field
Estimator F takes xs, ps, and pt as inputs and generates the
flow fields w and occlusion masks m.

w,m = F (xs,ps,pt) (1)
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Fig. 2. Overview of our GFLA model. The Global Flow Field Estimator is used to generate flow fields. The Local Neural Texture Renderer yields results by
spatially transforming the source features using local attention. Dotted lines indicate that our local attention module can be used at different scales.

where the flow fields w assign a source patch for each target
location. The occlusion masks m with continuous values
between 0 and 1 indicate whether the flowed source patches
can be used to generate targets. We design F as a fully
convolutional network. w and m share all weights of F other
than their output layers.

Warping sources at the feature level can help models to
be able to generate new content. Meanwhile, it relaxes the re-
quirements of the flow field estimation since the resolutions of
the generated flow fields are reduced. However, networks may
struggle to find reasonable sampling positions. An important
reason is that the gradient propagation of the input features
and flow fields are mutually constrained during the warping
operation. The input features cannot obtain correct gradients
without reasonable flow fields and vice versa. Therefore, we
use additional losses to help with the training. We propose a
sampling correctness loss to constrain w in a self-supervised
manner. The sampling correctness loss calculates the sim-
ilarity between the warped source feature and the ground-
truth target feature at the VGG feature level. Let vs and vt
denote the features generated by a specific layer of VGG19.
vs,w = w(vs) is the warped results of the source feature vs
using w. The sampling correctness loss calculates the relative
cosine similarity between vs,w and vt.

Lc =
1

N

∑
l∈Ω

exp(−
µ(vls,w,v

l
t)

µlmax
) (2)

where µ(∗) denotes the cosine similarity. Coordinate set Ω
contains all N positions in the feature maps. vls,w and vlt
denote the features of vs,w and vt located at the coordinate
l = (x, y). The normalization term µlmax is used to avoid the
bias brought by occlusion. It represents the similarity between
vlt and its most similar feature in the source feature map vs.

It is calculated as

µlmax = max
l′∈Ω

µ(vl
′

s ,v
l
t) (3)

where vl
′

s is the feature of vs located at the coordinate l′.
Our sampling correctness loss calculates the element-wise

similarities. It cannot model the correlation of adjacent fea-
tures. However, the deformations of image neighborhoods are
highly correlated. To model these correlations, we further
propose a regularization term. This regularization term is
designed to punish local regions where the transformation
is not an affine transformation. Let ct be the 2D coordinate
matrix of the target feature map. The corresponding source
coordinate matrix can be written as cs = ct + w. We use
Nn(ct, l) to denote local n × n patch of ct centered at the
location l. Our regularization assumes that the transformation
between Nn(ct, l) and Nn(cs, l) is an affine transformation.

Tl = AlSl =

[
θ11 θ12 θ13

θ21 θ22 θ23

]
Sl (4)

where Tl =

[
x1 x2 ... xn×n
y1 y2 ... yn×n

]
with each coordinate

(xi, yi) ∈ Nn(ct, l) and Sl =

 x1 x2 ... xn×n
y1 y2 ... yn×n
1 1 ... 1

 with

each coordinate (xi, yi) ∈ Nn(cs, l). The estimated affine
transformation parameters Âl can be solved using the least-
squares estimation as

Âl = TlS
H
l (SlS

H
l )−1 (5)

where SHl is the transpose matrix of Sl. Our regularization is
calculated as the `2 distance of the error.

Lr =
∑
l∈Ω

∥∥∥Tl − ÂlSl

∥∥∥2

2
(6)
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Fig. 3. Overview of our Local Attention. We first extract the feature patch pair from the source and target according to the flow fields. Then the context-aware
sampling kernel is calculated by the kernel prediction net. Finally, we sample the source feature and obtain the warped result located at l.

B. Local Neural Texture Renderer

The Local Neural Texture Renderer G is responsible for
generating the result images by rendering target poses with
the source neural textures. It takes xs, pt, w, and m as inputs
and generates the result image x̂t.

x̂t = G(xs,pt,w,m) (7)

To avoid the poor gradient propagation of the Bilinear
sampling, we propose a local attention operation to sample
the source features with a content-aware manner. Our local
attention works as a neural renderer where the source neural
textures are sampled to render the target bones. We illustrate
the processing details in Figure 3. Let ft and fs represent the
extracted features of target bones pt and source images xs
respectively. For each location l, local patches Nn(ft, l) and
Nn(fs, l + wl) are first extracted from ft and fs.1 Then, we
predict the local n× n kernel kl as the attention coefficients
from the extracted local feature patch pair using a kernel
prediction network M .

kl = M(Nn(fs, l + wl),Nn(ft, l)) (8)

We design M as a fully connected network. The local patch
pair Nn(fs, l+wl) and Nn(ft, l) are directly concatenated as
the network inputs. We use the softmax function as the non-
linear activation function of the output layer of model M . This
operation forces the sum of kl to 1, which enables the stability
of gradient backward. Finally, the attention result localed at
coordinate l = (x, y) is calculated as

f lattn = P (kl ⊗Nn(fs, l + wl)) (9)

where ⊗ denotes the element-wise multiplication over the
spatial domain and P represents the global average pooling

1The patch Nn(fs, l+wl) is extracted using the Bilinear sampling as the
coordinates may not be integers.

operation. The final warped feature fattn is obtained by
repeating the previous steps for each location l.

Furthermore, in order to enable the network to generate
occluded contents, we use the mask m with continuous values
between 0 and 1 to select features between the warped result
fattn and the target feature ft. The final output feature map
fout is calculated as

fout = (1−m) ∗ ft + m ∗ fattn (10)

We train the network using a joint loss consisting of a
reconstruction `1 loss, adversarial loss, perceptual loss, and
style loss. The reconstruction `1 loss is written as

L`1 = ‖xt − x̂t‖1 (11)

The generative adversarial loss [41] is used to mimic the
distributions of the ground-truth xt.

Ladv = E[log(1−D(G(xs,pt,w,m)))]

+ E[logD(xt)] (12)

where D is the discriminator of the Local Neural Texture
Renderer G. The perceptual loss and style loss introduced
by [42] are used to reduce the reconstruction errors. The
perceptual loss calculates `1 distance between activation maps
of a pre-trained network. It can be written as

Lperc =
∑
i

‖φi(xt)− φi(x̂t)‖1 (13)

where φi is the activation map of the i-th layer of a pre-trained
network. The style loss calculates the statistic error between
the activation maps as

Lstyle =
∑
j

∥∥∥Gφj (xt)−Gφj (x̂t)
∥∥∥

1
(14)
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where Gφj is the Gram matrix constructed from activation maps
φj . Our GFLA model is trained using the overall loss as

LG = λcLc + λrLr + λ`1L`1 + λaLadv
+ λpLprec + λsLstyle (15)

IV. MODELING THE TEMPORAL CONSISTENCY
FOR PERSON IMAGE ANIMATION

The pose-guided person image animation task refers to
generating videos by rendering continuous skeletons using the
neural textures of source images. Different from the generation
task, it requires not only generating realistic textures for each
frame but also modeling the temporal consistency between
adjacent frames. Therefore, we further improve our model to
generate coherent results. First, a Motion Extraction Network
is proposed to extract accurate movements from the noisy input
skeletons. Then we improve our GFLA model to generate
sequences in a recurrent manner. We describe the details in
this section.

A. Motion Extraction Network

One of the major problems is that the input skeleton
sequences extracted by the popular algorithms [26], [27]
are not temporally consistent. As shown in Figure 8, the
predicted locations vibrate around the ground-truth values.
Our Motion Extraction Network works as a denoise model
extracting accurate movements from noisy skeleton sequences.
The architecture of the Motion Extraction Network is shown
in Figure 4. Inspired by the paper [43], we design the network
using 1D convolutional layers. The input layer of this network
takes the concatenated (x, y) coordinates of the N joints
for each skeleton frame instead of the 2D heat maps. Let
J

[1,K]
t ∈ R2N×K denotes the joints of K input skeletons. The

output joints Ĵ
[1,K]
t contains the coordinates of skeletons with

accurate movements. We use Adaptive layer normalization
(ADALN) in this network. It has a similar architecture to
that of ANAIN [44] but using layer normalization [45] as
the normalization function. Layer normalization calculates
the statistics for each single training case and normalizes
the activities in a batch-wise manner. The effect of this
normalization operation can be explained as to removing the
unrelated factors such as global locations and scales, thereby
making the network focus on motion extraction. As our task
is to reconstruct the coherent skeletons, we need to recover
the statistics of the original sequences after reasoning about
the motions. Therefore, we enable the network to recover the
original statistics by calculating the affine parameters of the
normalization layers from the input skeletons. The network
is trained with ground-truth joints J[1,K]

gt . The commonly used
mean per-joint position error (MPJPE) is employed as the loss
function.

Lmpjpe =
∥∥∥Ĵ[1,K]

t ,J
[1,K]
gt ,

∥∥∥
1

(16)

Since most person animation datasets do not provide the
required ground-truth skeleton labels, we train this network
separately using the Human3.6M dataset [46]. This dataset
contains accurate 3D human skeleton sequences acquired by
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Fig. 4. The architecture of our Motion Extraction Network.

recording the performance of 11 subjects under 4 different
viewpoints. We extract the noise skeleton inputs from the
videos of the Human3.6M dataset by using the pose ex-
tractor [27]. The ground-truth labels J

[1,K]
gt are obtained by

projecting the 3D skeletons to the corresponding viewpoints.
After training the Motion Extraction Network, we can obtain
the clean skeletons Ĵ

[1,K]
t by performing inference on the

animation datasets.

B. Sequential Global-Flow Local-Attention Model

We design a sequential GFLA model to generate result
videos from the extracted accurate movements. Let p̂[1,K]

t ≡
{p̂1

t , p̂
2
t , ..., p̂

K
t } denotes the 2D heat map sequences obtained

from the extracted joints Ĵ
[1,K]
t . Our model generates video

clips x̂
[1,K]
t ≡ {x̂1

t , x̂
2
t , ..., x̂

K
t } by rendering skeletons p̂

[1,K]
t

using the appearance of the source image xs. We explicitly
build the correlations between adjacent frames. Video clips
are generated in a recurrent manner: the previously generated
frames are used as the inputs of the current generation step.
Specifically, Figure 5 shows the generation process of frame
x̂kt . It can be seen that we have added an additional spa-
tial transformation module responsible for transforming the
information of the previously generated frame x̂k−1

t to the
sequential GFLA model. Our model first extracts flow fields
wk
s and wk

p using the Global Flow Field Estimators Fs and
Fp respectively.

wk
s ,m

k
s = Fs(xs,ps, p̂

k
t ) (17)

wk
p ,m

k
p = Fp(x̂

k−1
t , p̂k−1

t , p̂kt ) (18)

where the mk
s and mk

p are the occlusion masks. The Local
Neural Texture Renderer G is then used to generate the result
image by spatially transforming the information of xs and
x̂k−1
t .

x̂kt = G(xs,ps,w
k
s ,m

k
s , x̂

k−1
t , p̂k−1

t ,wk
p ,m

k
p, p̂

k
t ) (19)

Two local attention modules are used to warp the features
of the source image xs and previously generated image
x̂k−1
t . The processing operation is the same as that described

in Section III-B. The output features fkout s and fkout p are
generated by these local attention modules. The final output
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feature fkout is calculated by fusing the outputs of the two
branches

fkout = fkout s + fkout p (20)

We train the animation model using both spatial and tem-
poral losses. The spatial losses can constrain the model to
generate realistic frames. We use the same joint loss (Equa-
tion 15) as that of our image generation model for each result
frame. The temporal loss is used to model the correlations
between different frames. We use a temporal discriminator
Dv to calculate this loss. The temporal discriminator Dv takes
image sequences as inputs and estimates the probabilities that
the inputs are sampled from real video clips.

Ladv v = E[log(1−Dv(x̂
[1,K]
t )))]

+ E[logDv(x
[1,K]
t )] (21)

Therefore, the overall loss function of our animation model
can be written as

LA =
1

K

K∑
k=1

LkG + λvLadv v (22)

where LkG represents the spatial loss of frame x̂kt .

V. EXPERIMENTS

In this section, we evaluate the performance of the proposed
method. The network structures and training details are first
provided in Section V-A. Then, we verify the impact of the
proposed modules. The ablation studies are divided into two
parts. In Section V-B, we show that our GFLA framework
can efficiently spatially transform source feature maps. In
Section V-C, we verify the efficacy of our sequential GFLA
model. Finally, we compare our method with several state-of-
the-art algorithms over both generation and animation tasks in
Section V-D.

A. Implementation Details

Network Architecture and Training Details. Auto-encoder
structures are employed to design our networks. We use the
residual block [47] as the basic component of our model. Un-
less otherwise specified, we train our models using 256× 256
images. We use local attention modules for feature maps with
resolutions of 32 × 32 and 64 × 64. The extracted local
patch sizes are 3 and 5 respectively. For the person image
generation task, we train our GFLA model in stages. The
Flow Field Estimator is first trained to generate flow fields.
Then we train the whole model in an end-to-end manner. For
the image animation task, we first train the Motion Extraction
Network using the Human3.6M dataset [46] as described in
Section IV-A. Then we train our sequential GFLA model using
the predicted clean skeletons. We adopt the ADAM optimizer
with the learning rate as 10−4.
Metrics. We employ both image-based metrics and video-
based metrics to evaluate our results. Learned Perceptual
Image Patch Similarity [48] (LPIPS) is used to calculate
the reconstruction errors of generated images. This metric
computes perceptual distances between input image pairs.
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Fig. 5. The generation process of video frame x̂k
t . Our sequential GFLA model

spatially transforms the information of the source image xs and previously
generated image x̂k−1

t to generate the result.

Meanwhile, we employ Fréchet Inception Distance [49] (FID)
to measure the realism of the generated images. It calcu-
lates the Wasserstein-2 distance between distributions of the
generated data and real data. For video results, in order
to model the temporal consistency errors, we use the I3D
model [50] to extract the video features. Average Euclidean
Distance [7] (AED) is used as the perceptual reconstruction
error indicator. It calculates the Euclidean distance between
features of generated videos and ground-truth videos. FID-
Video takes the extracted video features as inputs and evaluates
the realism of generated videos. Besides, we perform a Just
Noticeable Difference (JND) test to evaluate the subjective
quality. Volunteers are asked to choose the more realistic im-
age from the data pair of ground-truth and generated images.
We provide the fooling rate as the evaluation result.
Datasets. For the person image generation task, we use
two public datasets: Market-1501 [51] and DeepFashion In-
shop Clothes Retrieval Benchmark [52]. Market-1501 contains
32668 low-resolution images (128 × 64). The images vary
in terms of the viewpoints, background, illumination, etc.
The DeepFashion dataset contains 52712 high-quality model
images with clean backgrounds. We split these datasets with
the same method as that of [4]. The personal identities of the
training and testing sets do not overlap. Two video datasets
are used for animation tasks: FashionVideo [25] and iPER [8].
The FashionVideo dataset contains 500 training and 100 test
videos, each containing roughly 350 frames. Videos have static
viewpoints and clean backgrounds. The iPER dataset contains
206 high-resolution videos. Human subjects in this dataset
have different conditions of shape, height, and gender.

B. Efficacy of the GFLA Framework

We evaluate the components of our GFLA framework by
comparing our model with the following variants.
Baseline. An auto-encoder convolutional network is used as
the Baseline model. We do not use any attention blocks in
this model. Source images xs and guidance poses pt, ps are
directly concatenated as the model inputs.
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Flow-Based Content-aware FID LPIPS
Method Sampling

Baseline N - 16.008 0.2473
Global-Attn N - 18.616 0.2575
Local-Attn Y Y 12.943 0.2339
Bi-Sample Y N 12.143 0.2406
Full Model Y Y 10.573 0.2341

TABLE II. The ablation study results of our GFLA model.

Global Attention Model (Global-Attn). The Global-Attn
model is used to compare global attention with our local
attention. This model has a similar architecture to the Local
Neural Texture Renderer G in Section III-B. The local atten-
tion modules are replaced by global attention blocks where the
attention coefficients are calculated by the similarities between
the source features fs and target features ft.
Local Attention Model (Local-Attn). The Local-Attn model
is used to evaluate the efficacy of our sampling correctness loss
and regularization loss described in Section III-A. We use the
same network architecture as the GFLA model. However, the
sampling correctness loss Lc and regularization loss Lr are
not employed for training.
Bilinear Sampling Model (Bi-Sample). The Bi-Sample
model is used to evaluate the efficacy of our local-attention
module described in Section III-B. We use both Global Flow
Field Estimator F and Local Neural Texture Renderer G in
this model. However, the local-attention module is replaced
by the Bilinear sampling method.
Full Generation Model (Ours). The proposed GFLA frame-
work is used in this model.

The evaluation results of the ablation study are shown in
Table II. Compared with the Baseline, the performance of
the Global-Attn model is degraded. It means that the global
attention cannot efficiently transform the source information in
this task. Flow-based models (Local-Attn, Bi-Sample, and our
Full model) improve the generation results, since they force the
attention coefficient matrix to be a sparse matrix. The Local-
Attn model achieves a good LPIPS result. However, the poor
FID score indicates that the realism of its results is degraded
since it cannot find reasonable sampling positions for target
outputs. The Bi-Sample model is able to obtain relatively ac-
curate flow fields. However, the pre-defined sampling method
with limited receptive fields leads to performance degradation.
Our full model improves the performance by using the content-
aware sampling operation with adjustable receptive fields.

The subjective comparison of these ablation models can
be found in Figure 6. The Baseline and Global-Attn model
are able to generate images with correct poses. However,
the source appearances are not well-maintained. The possible
explanation is that these models generate images by first
extracting global features and then propagating the informa-
tion to specific locations. However, the global features only
characterize the global style of the sources, regardless of
spatial information. Thus, it causes the vivid local texture
details ”wash away” in the ultimate image. The flow-based
methods spatially transform the features. They are able to
reconstruct image details. The Local-Attn model generates
textures with similar styles of that of sources. However,

Source 
Image

Target 
Image

Baseline Global-Attn Bi-Sample Full ModelLocal-Attn

Fig. 6. Qualitative results of our GFLA model and its variants.

Source 
Image

Global-Attn Bi-Sample Full ModelGlobal-Attn
Attention Map

Bi-Sample
Attention Map

Full Model
Attention MapLocal-Attn Local-Attn

Attention Map

Fig. 7. The visualization results of different attention modules. The red
rectangles in the generated images indicate the query locations. The heat
maps show the visualization of the corresponding attention coefficients of
these query locations. Blue represents low weights.

specific texture patterns (e.g. logos) are not reconstructed,
since it cannot extract accurate movements between sources
and targets. The Bi-Sample model can generate vivid textures.
However, artifacts can be observed in its results. Our full
model is able to generate realistic images. We further provide
the visualization of the attention coefficients in Figure 7.
For each attention module, we provide the generated target
images and the corresponding attention coefficient heat maps.
In order to visualize the attention coefficients, we first calculate
attention maps of all query locations in the red rectangle.
Then the visualization heat map is calculated by summing the
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DeepFashion Market-1501 Number of
FID LPIPS JND FID LPIPS Mask-LPIPS JND Parameters

Def-GAN 18.457 0.2330 9.12% 25.364 0.2994 0.1496 23.33% 82.08M
VU-Net 23.667 0.2637 2.96% 20.144 0.3211 0.1747 24.48% 139.36M
Pose-Attn 20.739 0.2533 6.11% 22.657 0.3196 0.1590 16.56% 41.36M
Intr-Flow 16.314 0.2131 12.61% 27.163 0.2888 0.1403 30.85% 49.58M
Ours 10.573 0.2341 24.80% 19.751 0.2817 0.1482 27.81% 14.04M

TABLE III. Quantitative comparisons over dataset DeepFashion [52] and Market-1501 [51] with state-of-the-art person image generation methods including
Def-GAN [2], VU-Net [28], Pose-Attn [4], and Intr-Flow [30]. FID [49] and LPIPS [48] are objective metrics. JND is obtained by human subjective studies.

obtained attention maps. It can be seen that the Global-Attn
model struggles to exclude irrelevant information. Therefore,
it is hard to reconstruct accurate textures using the attention
results. The Local-Attn model casts a wide net to sample
textures for a local target patch. It seems that this model
tries to sample all possible positions and omitted the irrelevant
information using occlusion masks. However, texture patterns
are destroyed during this operation. The Bi-Sample model is
able to sample local regions. However, incorrect regions are
often sampled due to the poor gradient propagation. Our Full
model using the content-aware sampling method can flexibly
change the sampling weights and avoid artifacts.

C. Efficacy of the temporal-consistency modeling

We prove that our sequential GFLA model and Motion
Extraction Network can help with modeling the temporal-
consistency. We compare our model with the following vari-
ants.
Naive Animation Model (Naive-Animation). We directly
use our GFLA model described in Section III as the Naive-
Animation model. It is trained to generate a single target image
from a source input. In the inference phase, video frames are
generated independently.
Sequential Animation Model (Seq-Animation). The Seq-
Animation model is used to evaluate the efficacy of our
sequential GFLA model. We use the architecture described
in Section IV-B for this model. However, the Motion Ex-
traction Network is not used to preprocess the noisy skeleton
sequences.
Full Animation Model (Ours-Animation). We use the se-
quential GFLA model with clean skeleton sequences obtained
by the Motion Extraction Network.

The evaluation results are shown in Table IV. It can be seen
that obvious performance gain is obtained by using the se-
quential GFLA model which explicitly models the correlations
between adjacent frames. However, the noisy input skeletons
still cause inconsistency which leads to performance degra-
dation. Our full model further improves the performance by
extracting clean movements from the noisy input sequences.
The subjective results are shown in Figure 8. It can be seen
that Naive-Animation can generate realistic video frames.
However, it struggles to maintain temporal consistency. The
Seq-Animation model solves this problem to a certain extent.
However, the noisy input sequences still cause incoherent
results. By preprocessing the input skeletons using the Motion
Extraction Network, our animation model is able to generate
coherent videos with vivid textures.

Source Noisy Skeleton Extracted
Skeleton

Naive-
Animation

Seq-
Animation

Ours-
Animation Ground-Truth

Fig. 8. Qualitative results of our person image animation model and its
variants. Click on the image to play the video in a browser. The red rectangles
in the video highlight the temporal inconsistent clips.

Sequential Motion FID-Video AED
Generation Denoise

Naive-Animation N N 4.176 0.0141
Seq-Animation Y N 3.685 0.0128
Ours-Animation Y Y 3.426 0.0126

TABLE IV. The ablation study results of our image animation model.

D. Comparisons

In this section, we compare our method to several state-of-
the-art models on both generation and animation tasks. For the
person image generation task, popular methods Def-GAN [2],
VU-Net [28], Pose-Attn[4] and Intr-Flow [30] are selected as
the competitors. The quantitative evaluation results are shown
in Table III. Please note that we train the Market-1501 dataset
using their original 128×64 images. To alleviate the influence
of the backgrounds on the reconstruction errors, we follow the
previous work [1] to provide the mask-LPIPS. It can be seen
that our model achieves competitive evaluation results, which
means that our model can generate realistic results with fewer
perceptual reconstruction errors. Since subjective metrics have
their own limitations, their results may mismatch with the
actual subjective perceptions [48]. Therefore, a human objec-
tive evaluation test is performed. A JND test is implemented
on Amazon Mechanical Turk (MTurk). Volunteers are asked
to choose the more realistic image from image pairs of real
and generated images. The test is performed over 800 image
pairs for each model and dataset. To avoid individual bias,
each image pair is compared 5 times by different volunteers.
The results can be found in Table III. It can be seen that
our model achieves the best result in the challenging Fashion
dataset and competitive results in the Market-1501 dataset.
Besides, we provide the numbers of model parameters to

https://renyurui.github.io/GFLA-web/Animation_Ablation
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Source 
Image

Target 
Pose

Target 
Image Def-GAN VU-Net Pose-Attn OursIntr-Flow

Source 
Image

Target 
Pose

Target 
Image Def-GAN VU-Net Pose-Attn OursIntr-Flow

Fig. 9. Qualitative comparisons with several state-of-the-art person image generation models including Def-GAN [2], VU-Net [28], Pose-Attn[4], and Intr-
Flow [30]. The left part shows the results of the DeepFashion dataset. The right part shows the results of the Market-1501 dataset.

evaluate the computation complexity. Thanks to our efficient
spatial transformation blocks, our model does not require a
large number of convolution layers. Thus, we can achieve
high performance with less than half of the parameters of the
competitors.

We provide the typical results of different methods in
Figure 9. For the Fashion dataset, VU-Net and Pose-Attn
struggle to generate complex textures since these models lack
efficient spatial transformation blocks. Def-GAN generates
correct appearances by transforming neural textures with pre-
defined local affine transformation components (eg. arms and
legs etc.). However, the affine transformation sets are not
sufficient to represent the complex spatial variance, which
limits the model performance. The flow-based model Intr-
Flow is able to generate vivid textures for front pose images.
However, it fails to generate realistic results for side pose
images. The possible explanation is that this model requires
predicting 3D human meshes from 2D images to generate

the training flow field labels. Its performance is vulnerable
to 3D meshes estimation errors. Our model does not require
supplementary labels and obtains accurate flow fields in a
self-supervised manner. Thanks to our efficient deep spatial
transformation module, we can well preserve the complex
textures of the source images. It can be seen that our model
generates realistic results with not only correct global patterns
but also the vivid details such as the lace of clothes and the
shoelace. For the Market-1501 Dataset, artifacts are observed
in the results of competitors, such as the sharp edges in Pose-
Attn and the halo effects in Def-GAN. Our model is able
to generate realistic images. However, it is worth noting that
our model does not achieve significant advantages over the
competitors. The main reason is that the low-resolution images
in this dataset do not contain complex textures, which prevents
our advantages from being fully utilized.

For the pose-guided animation task, we compare our model
with FewShot-V2V [5] and LiquidNet [8]. The comparison
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FashionVideo iPER Number of
FID LPIPS FID-Video AED FID LPIPS FID-Video AED Parameters

LiquidNet 17.681 0.0897 5.174 0.0184 29.97 0.1096 9.212 0.0251 97.45M
FewShot-V2V 27.803 0.0816 5.096 0.0188 75.42 0.2524 8.213 0.0232 97.96M
Ours-Animation 14.95 0.0651 3.426 0.0126 20.53 0.0735 4.616 0.0183 23.51M

TABLE V. Quantitative comparisons over dataset FashionVideo [25] and iPER [8] with state-of-the-art person image animation methods including LiquidNet [8]
and FewShot-V2V [5]. FID and LPIPS are image-based metrics. Their results indicate the quality of video frames. FID-Video and AED are calculated using
video features. These metrics take the temporal distortions into consideration.

Source Input Skeleton LiquidNet FewShot-V2V Ours-Animation Source Input Skeleton LiquidNet FewShot-V2V Ours-Animation

Fig. 10. Qualitative comparisons with person image animation models LiquidNet [8] and FewShot-V2V [5]. The left part contains the results of the FashionVideo
dataset. The right part contains the results of the iPER dataset. Click on the image to play the video in a browser.

Fig. 11. We show more animation results of our model. The first and third
rows contain the source images. The second and fourth rows contain the driven
skeleton sequences and the generated results. Click on the image to play the
video in a browser.

results are shown in Table V. Different from the competi-
tors which employ either face refine models or background
inpainting models to improve their results, we do not use
any post-processing methods. It can be seen that our model

achieves the best results on both datasets. LiquidNet achieves
good FID and LPIPS scores, which means that it can generate
realistic video frames. However, the relatively poor FID-Video
and AED scores indicate that the temporal consistency is not
well-maintained. Although FewShot-V2V achieve good results
on the video-based metrics, it may suffer from some image-
based artifacts, which leads to poor FID scores. Our model can
generate coherent results with realistic frames. Meanwhile, we
use significantly fewer model weights than competitors.

The subjective results are provided in Figure 10. It can be
seen that the LiquidNet model struggles to maintain temporal
consistency. This is because this model generates each frame
independently. The FewShot-V2V model solves this problem
by modeling the correlations between adjacent frames. Al-
though this model can generate coherent results, it suffers from
artifacts when generating images with complex textures or
backgrounds. Our sequential GFLA model efficiently builds
temporal dynamics. Meanwhile, the accurate neural texture
transformation module helps with preserving the realistic
details. Therefore, our model can generate results with not
only correct textures but also vivid temporal details such as the
folds of clothes and the movements of hemlines. We provide
more results of our model in Figure 11. It can be seen that
our model is able to generate realistic videos even for source
images with complex textures.

VI. APPLICATION ON OTHER TASKS

In this section, we show that our model is not limited to
generating person images. It can be flexibly applied to other
tasks requiring spatial transformation. Additional experiments

https://renyurui.github.io/GFLA-web/Animation_Comparison
https://renyurui.github.io/GFLA-web/Ours_More
https://renyurui.github.io/GFLA-web/Ours_More
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are shown on two typical example tasks: novel view synthesis
and face image animation.
Novel view synthesis requires generating new images of an
object observed from arbitrary viewpoints. It can be solved
by spatially transforming the source information. The car and
chair categories of the ShapeNet dataset [53] are used in this
experiment. We train the GFLA model described in Section III.
The results can be found in Figure 12. We provide the results
of appearance flow [22] which warps the source images at the
pixel level as a comparison. It can be seen that appearance
flow is able to transform the contents in the source images.
However, it struggles to reconstruct the occluded details. Our
model generates realistic images.
Face image animation is to generate a coherent face video
clip according to a source image and a driven structure
sequence. Similar to the person image animation task, this
task also requires spatial manipulation of source data. We
employ the real videos in the FaceForensics dataset [54] This
dataset contains 1000 videos of news briefings from different
reporters. We follow the previous papers [31], [5] to use the
edge maps as the structure guidance. Our sequential generator
described in Section IV-B is employed to tackle this task. We
show the qualitative results in Figure 13. It can be seen that our
model can generate temporally consistent results with realistic
textures.

VII. CONCLUSION AND FUTURE WORK

In this paper, we tackle the person image generation and
animation tasks using deep spatial transformation. We analyze
the possible reasons causing poor gradient propagation when
warping sources at the feature level. Targeted solution GFLA
framework is proposed to first estimate flow fields between
sources and targets and then sample the source features in
a content-aware manner. We have demonstrated empirically
that the GFLA model can provide improved gradients, leading
to accurate spatial transformations. Meanwhile, we further
propose a sequential GFLA model to extract the correlations
between adjacent frames for the animation task. Experiments
show that our model can efficiently build temporal dynamics
and generate coherent videos. Finally, we demonstrate that our
model is versatile on other tasks requiring spatial transforma-
tion such as face image animation and novel view synthesis.

Although our model generates impressive results, we also
observe some failure cases as shown in Figure 14. These
typical failure cases are due to the severe occlusions of source
images, which misleads the model to sample incorrect neural
textures. We provide possible solutions for this open issue
to inspire future works in this problem. One way is to add
additional constraints to flow fields. For example, loss func-
tions can be designed to penalize sampling between different
semantic regions. Another solution is to perform multi-step
warping operations to gradually warp source images to targets
by using additional video datasets.
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P. Van der Smagt, D. Cremers, and T. Brox, “Flownet: Learning optical
flow with convolutional networks,” arXiv preprint arXiv:1504.06852,
2015. 2

[24] A. Ranjan and M. J. Black, “Optical flow estimation using a spatial
pyramid network,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2017, pp. 4161–4170. 2

[25] P. Zablotskaia, A. Siarohin, B. Zhao, and L. Sigal, “Dwnet: Dense warp-
based network for pose-guided human video generation,” arXiv preprint
arXiv:1910.09139, 2019. 2, 3, 7, 11

[26] Z. Cao, G. Hidalgo, T. Simon, S.-E. Wei, and Y. Sheikh, “Openpose:
realtime multi-person 2d pose estimation using part affinity fields,” arXiv
preprint arXiv:1812.08008, 2018. 2, 6

[27] J. Li, C. Wang, H. Zhu, Y. Mao, H.-S. Fang, and C. Lu, “Crowdpose:
Efficient crowded scenes pose estimation and a new benchmark,” arXiv
preprint arXiv:1812.00324, 2018. 2, 6, 19

[28] P. Esser, E. Sutter, and B. Ommer, “A variational u-net for conditional
appearance and shape generation,” in Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, 2018, pp. 8857–8866.
2, 3, 9, 10, 15

[29] X. Han, X. Hu, W. Huang, and M. R. Scott, “Clothflow: A flow-
based model for clothed person generation,” in Proceedings of the IEEE
International Conference on Computer Vision, 2019, pp. 10 471–10 480.
3

[30] Y. Li, C. Huang, and C. C. Loy, “Dense intrinsic appearance flow
for human pose transfer,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2019, pp. 3693–3702. 3, 9,
10, 15

[31] T.-C. Wang, M.-Y. Liu, J.-Y. Zhu, G. Liu, A. Tao, J. Kautz, and B. Catan-
zaro, “Video-to-video synthesis,” arXiv preprint arXiv:1808.06601,
2018. 3, 12

[32] C. Chan, S. Ginosar, T. Zhou, and A. A. Efros, “Everybody dance now,”
arXiv preprint arXiv:1808.07371, 2018. 3

[33] K. Aberman, M. Shi, J. Liao, D. Lischinski, B. Chen, and D. Cohen-Or,
“Deep video-based performance cloning,” in Computer Graphics Forum,
vol. 38, no. 2. Wiley Online Library, 2019, pp. 219–233. 3
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A . ADDITIONAL RESULTS OF PERSON IMAGE GENERATION

We provide additional comparisons with state-of-the-art person image generation models in this section. The qualitative
results is shown in Figure H.15.

Source 
Image

Target 
Pose

Target 
Image Def-GAN VU-Net Pose-Attn OursIntr-Flow

Source 
Image

Target 
Pose

Target 
Image

Def-GAN VU-Net Pose-Attn OursIntr-Flow

Fig. H.15. The qualitative comparisons with several state-of-the-art models including Def-GAN [2], VU-Net [28], Pose-Attn[4], and Intr-Flow [30] over dataset
DeepFashion [52] and Market-1501 [51].
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B . ADDITIONAL RESULTS OF PERSON IMAGE ANIMATION

We provide additional results of the person image animation task in Figure B.16.

Source Input Skeleton LiquidNet FewShot-V2V Ours-Animation Source Input Skeleton LiquidNet FewShot-V2V Ours-Animation

Fig. B.16. Qualitative results of the person image animation task. We compare our model with stare-of-the-art person image animation models including
LiquidNet [8] and FewShot-V2V [5]. Click on the image to start the animation in a browser.

C . ADDITIONAL RESULTS OF FACE IMAGE ANIMATION

We provide additional results of the face image animation task in Figure C.17.

Fig. C.17. Qualitative results of the image animation task. For each row, the leftmost image is the source image. The others are generated images. Click on
the image to start the animation in a browser.

https://renyurui.github.io/GFLA-web/Additional_Animation_Comparison
https://user-images.githubusercontent.com/30292465/75650849-1d03f280-5c92-11ea-9f3d-ae4c85524787.gif
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D . ADDITIONAL RESULTS OF VIEW SYNTHESIS

We provide additional results of the view synthesis task in Figure D.18 and Figure D.19.

Fig. D.18. Qualitative results of the view synthesis task. For each group, we show the results of Appearance Flow [22], the results of our model, and ground-
truth images, respectively. The top left image is the input source image. The other images are the generated results and ground-truth images. Click on the
image to start the animation in a browser.

https://user-images.githubusercontent.com/30292465/75650787-f8a81600-5c91-11ea-998e-94685f956302.gif
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Fig. D.19. Qualitative results of the view synthesis task. For each group, we show the results of Appearance Flow [22], the results of our model, and ground-
truth images, respectively. The top left image is the input source image. The other images are the generated results and ground-truth images. Click on the
image to start the animation in a browser.

https://user-images.githubusercontent.com/30292465/75650814-09588c00-5c92-11ea-8c08-52662312c81d.gif
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E . IMPLEMENTATION DETAILS

Basically, the auto-encoder structure is employed to design our networks. We use the residual blocks as shown in Figure E.20
to build our model. Each convolutional layer is followed by instance normalization [55]. We use Leaky-ReLU as the activation
function in our model. Spectral normalization [56] is employed in the discriminator to solve the notorious problem of instability
training of generative adversarial networks.

For our GFLA model, we show the architecture in Figure E.21. We note that since the images of the Market-1501 dataset
are low-resolution images (128 × 64), we only use one local attention block at the feature maps with resolution as 32 × 16.
We design the kernel prediction net M in the local attention block as a fully connected network. The extracted local patch
Nn(fs, l+wl) and Nn(ft, l) are concatenated as the input. The output of the network is kl. Since it needs to predict attention
kernels kl for all location l in the feature maps, we use a convolutional layer to implement this network, which can take
advantage of the parallel computing power of GPUs. We train this model in stages. The Flow Field Estimator is first trained
to generate flow fields. Then we train the whole model in an end-to-end manner. We adopt the ADAM optimizer. The learning
rate of the generator is set to 10−4. The discriminator is trained with a learning rate of one-tenth of that of the generator. The
batch size is set to 8 for all experiments. The loss weights are set to λc = 5, λr = 0.0025, λ`1 = 5, λa = 2, λp = 0.5, and
λs = 500.

For our person image animation model, we show the architecture of the Motion Extraction Network E.22 and sequential
GFLA network E.23. The Motion Extraction Network is designed using a similar structure as that of the paper [43]. We use
the 1D convolutional layers as the basic component. The ADALN is used as the normalization layer. Let f ∈ RN×C×L denotes
the activations of a 1D convolution layer. The ADALN normalize the inputs as

ADALN(f) = γ(
f − µ(f)

σ(f)
) + β (23)

where µ(f) and σ(f) are computed across spatial and channel dimensions for each training case

µb(f) =
1

CL

C∑
c=1

L∑
l=1

fbcl (24)

σb(f) =

√√√√ 1

CL

C∑
c=1

L∑
l=1

(fbcl − µb(f))2 (25)

Instead of learning a single set of affine parameters γ and β, we follow previous methods [44] to calculate them for each
training case using the input joints. This operation allows the network to recover the input statistics (i.e. locations, scales).

β, γ = E(J
[1,K]
t ) (26)

where E is the statistic extraction module. As shown in Figure E.23, the sequential GFLA model has a similar architecture
with that of the GFLA model. We add another path to transform the information of the previously generated images. We first
train the Motion Extraction Network using the Human3.6M dataset. We use the Alphapose model [34] extract the noisy input
skeletons. The corresponding ground-truth skeletons are provided by the dataset. After training the Motion Extraction Network,
we can perprocess the skeletons of the person image animation datasets FashionVideo [27] and iPER [8]. Finally, we train the
sequential GFLA model in an end-to-end manner. For the first frame, we use the source image as the previously generated
image. We adopt the ADAM optimizer. The learning rate of the generator is set to 10−4. The discriminator is trained with a
learning rate of one-tenth of that of the generator. The batch size is set to 2 for all experiments.
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Fig. E.20. The components used in our networks.
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Fig. E.21. The network architecture of our GFLA model.
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Fig. E.22. The architecture of our Motion Extraction Network.
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Fig. E.23. The network architecture of our sequential GFLA model.


