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Abstract— Recently, many new applications arose for
multi-spectral and hyper-spectral imaging. Besides modern bio-
metric systems for identity verification, also agricultural and
medical applications came up, which measure the health con-
dition of plants and humans. Despite the growing demand,
the acquisition of multi-spectral data is up to the present compli-
cated. Often, expensive, inflexible, or low resolution acquisition
setups are only obtainable for specific professional applica-
tions. To overcome these limitations, a novel camera array for
multi-spectral imaging is presented in this article for generating
consistent multi-spectral videos. As differing spectral images
are acquired at various viewpoints, a geometrically constrained
multi-camera sensor layout is introduced, which enables the
formulation of novel registration and reconstruction algorithms
to globally set up robust models. On average, the novel acquisition
approach achieves a gain of 2.5 dB PSNR compared to recently
published multi-spectral filter array imaging systems. At the same
time, the proposed acquisition system ensures not only a superior
spatial, but also a high spectral, and temporal resolution, while
filters are flexibly exchangeable by the user depending on the
application. Moreover, depth information is generated, so that
3D imaging applications, e.g., for augmented or virtual reality,
become possible. The proposed camera array for multi-spectral
imaging can be set up using off-the-shelf hardware, which allows
for a compact design and employment in, e.g., mobile devices or
drones, while being cost-effective.

Index Terms— Multi-spectral imaging, image acquisition.

I. INTRODUCTION

THE measurement of light in a number of spectral bands
is known as multi-spectral imaging. Traditional color

imaging can be seen as a simple representative by recording
red, green, and blue color data. Consequently, it is possible
to cover the same information as the human visual system
does. Nevertheless, one can also acquire more spectral bands
to reveal further information humans can’t experience. In the
last decades, numerous fields of application have been studied,
which benefit from the measurement of multi-spectral infor-
mation. Some popular use-cases shall be shortly reviewed in
the following to collate common challenges and to motivate
the need of a novel multi-spectral imaging system.

A. Applications
In the past years, biometric identification systems have

been intensively studied to include multi-spectral imaging as
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Fig. 1. Liquids detection and security feature tracking are typical applications
for multi-spectral imaging. The pictures were recorded and processed using
the proposed CAMSI acquisition system. On the left, the green component is
shown, while a 950 nm bandpass image is depicted on the right. The veins
of the arm become visible and the liquid changes its brightness.

security feature [1]. There, images of palm-dorsa veins are
recorded in the near-infrared or infrared range, which lead to
a unique pattern for every human. In combination with other
meaningful features, e.g., iris scans, highly secure authentica-
tion systems are realized [2]. In Fig. 1, an example for vein
detection is depicted that was recorded utilizing the proposed
Camera Array for Multi-Spectral Imaging (CAMSI). Recently,
also the food industry is exploring solutions to enhance quality
controls using multi-spectral acquisition systems [3] to identify
foreign objects and substances, which contaminate the food
during production. Other applications deal with the analysis
of paintings using multi-spectral imaging [4]. Hence, visual
and measurement-based quantitative scientific analysis can
be conducted to evaluate the quality of art, or the time of
origin. Moreover, in agriculture and geoinformatics, a lot of
applications recently came up, e.g., classification of different
types of crops [5], or monitoring agricultural field condi-
tions [6]. Other methods estimate coastal water depth [7],
do land cover classification in urban and rural landscape [8],
or measure the temperature of different seashore sections [9].
In medical applications, multi-spectral imaging is applied
to detect distressed persons, e.g., in swimming lakes [10].
Regarding the human body itself, one can evaluate the in
vivo microcirculation by investigating the vessels [11]. It is
possible to investigate humans for skin diseases and measure
the overall health condition [12]. Other examples deal with the
estimation of the heart rate [13], or the measurement of the
extent of dermal perfusion [14].

Even though there are many applications, typical similarities
regarding the requirements of the multi-spectral acquisition
system can be formulated. For one thing, changing filters
depending on the requirements is preferable, as the develop-
ment of applications can be significantly fastened. Finding a
suitable set of filters for the specific use case is not easy, so that
most applications benefit from a dynamic filter adaption [15].
Secondly, many designs find their way to mass-market only
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if the size of the acquisition system is compact and handy.
To reach a wide distribution of the system, also price plays
a crucial role. Likewise, many health and agricultural appli-
cations require or benefit from the acquisition of image as
well as video data. Of great importance is also the spatial
resolution, which is a limiting factor for many systems as
even a resolution of half a mega pixel is not reached for many
acquisition principles [16].

B. Outline of the Paper and Contributions

The manuscript is organized as follows. In Sec. II, pros and
cons of existing multi-spectral imaging techniques are exam-
ined. To overcome limitations, the novel CAMSI approach
is introduced in Sec. III. Besides the hardware description,
the problem statement as well as the versatility and extensibil-
ity of the novel approach are discussed. In Sec. IV calibration
and rectification of the multi-camera setup are depicted, before
the problem of cross-spectral registration is denoted in Sec. V.
There, the relation between disparity and depth is briefly
reviewed and the effect of cross-spectral extinction is presented
to motivate the need of a novel registration approach. After
introducing the global registration, a general formulation of
the pixel transformation is given that demands for only one
resampling. Next, recovery of occluded and mispredicted
pixels is tackled by a novel cross-spectral reconstruction
in Sec. VI. To demonstrate the performance of the overall
CAMSI approach, an extensive evaluation is given in Sec. VII.
For example, the registration performance of state-of-the-art
methods and CAMSI as well as an analysis to other multi-
spectral imaging techniques are given. In line with this, visual
examples and an evaluation on computational complexity are
depicted. The paper is briefly concluded in Sec. VIII.

In this paper, the following contributions are introduced:
• A novel geometrically constrained multi-camera sensor

layout is presented together with all required algorithms
to acquire high-quality multi-spectral images.

• State-of-the-art multi-modal stereo matching and the
resulting problem of cross-spectral extinction is dis-
cussed.

• A novel global registration is formulated for geometri-
cally constrained multi-spectral camera arrays.

• In line with this, CAMSI is compared to state-of-the-art
cross-spectral stereo-matching methods highlighting the
global cost aggregation as key feature.

• A fast cross-spectral reconstruction algorithm is intro-
duced, which takes all spectral components into account
for reconstructing occluded and mispredicted pixels.

• For CAMSI and several registration methods as well as
imaging systems, an extensive evaluation is conducted.

• In contrast to state-of-the-art approaches, an overall
processing chain is provided. Starting with the sensor
layout, also calibration, registration, reconstruction, and
direct mesh to grid resampling strategies are presented.

II. RELATED MULTI-SPECTRAL IMAGING TECHNIQUES

More than 40 years ago, the rise of digital color imaging
began with the publication of the Bayer filter [17], which
brought color cameras to the mass-market by placing red,

Fig. 2. On the left-hand side, a multi-spectral array is depicted. There, a 3×3
filter pattern is overlaid and repeated to cover the whole image sensor. The
filter array is integrated in front of the image sensor. On the right-hand side,
the structure of an exemplary filter wheel is shown.

green, and blue color filter arrays in front of the camera
sensor. Up to now, this principle was maintained, so that the
Bayer filter can be found in professional equipment as well
as in everyday life, e.g., smartphones, or cars. In line with
this, multi-spectral imaging can be defined as measurement
of 3 to 15 spectral bands. Recording more than three spectral
bands is complicated and briefly summarized in the following.

State-of-the-art approaches use either Charge-Coupled
Device (CCD) [18], [19] or CMOS Active Pixel (CAP) sensors
[20], [21] to measure incident light. Consequently, either
a CCD or CMOS sensor forms the backbone of a mod-
ern multi-spectral imaging system. To separate information
into multiple color components, different strategies can be
deployed.

Similar to Bayer color imaging, it is common to use a
Multi-Spectral Filter Array (MSFA) in front of the sensor by
including more filter elements into the mosaic [22]–[24]. For a
better overview, Fig. 2a depicts the structure of an exemplary
MSFA with nine different filters. In the last years, many efforts
were made to improve MSFAs [25], especially regarding
filter properties and technical feasibility. For example, silicon
nanowires can be used to control spectral filter properties [26],
or optical filters are integrated monolithically at wafer level
to measure 16, 36, or even more spectral components [27].
Image and video data is recordable, but the spatial resolution
of every spectral component is significantly reduced, which
can lead to strong aliasing. Hence, MSFAs always have to be
optimized by trading spatial versus spectral resolution, which
makes the measurement of many subbands difficult. Moreover,
the selection of filters and acquirable spectral bands is fixed
and can’t be changed in hindsight. As with widely-distributed
Bayer sensors, a mass-production can be realized very cost-
effective, while small custom-designed batch sizes become
highly expensive. MSFAs are well-suited for applications that
tackle the consumer market, but they are difficult to use for
industrial as well as professional applications and experimental
settings. Furthermore, MSFAs can’t provide depth information,
so that 3D imaging is not possible without using additional
hardware. An advantage of MSFAs is the compact design,
which makes them handy for mobile devices. Related to
MSFAs, also pushbroom acquisition techniques [28], [29] that
work as a line scanning camera are common. By integrating
different spectral filters in front of each row of a monochrome
sensor, the acquisition of multi-spectral data is achieved.
Pushbroom imaging devices are especially suited for moving
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camera scenarios, e.g., airborne recordings [30], as motion can
be used to allow for spatial imaging.

Another intuitive and well investigated class of
multi-spectral acquisition systems are Tunable Filters (TF).
There, a complete measurement is obtained by recording one
image of a spectral band after the other, yielding a sequence
of exposures resulting in a multi-spectral image. One ipossible
approach is to use a filter wheel (FW) setup [31], [32], where
a wheel of filters is mounted in front of a monochromatic
image sensor. By revolving the wheel, different subbands can
be measured one after the other (see Fig. 2b). An advantage
is that spatial resolution is not reduced, but it comes at the
price that video acquisition is impeded. However, the setup
is flexible, which means that the filters can be exchanged as
required by the user. FW setups are suitable for professional
applications as well as experimental settings and can be
ranked in the mid-price segment. In the end, one has to
consider that FW reach a certain size, which often restricts
the usage to scientific communities or special commercial
applications and prevents mobile usage, respectively. As for
MSFAs, FW do not provide depth information without using
additional hardware. Two further representatives of TFs
are liquid crystal tunable filters (LCTF) and acousto-optical
tunable filter arrays (AOTF) [33]. Both allow for electronically
controlled spectral filter properties and the transition of filters
can be implemented faster in comparison to filter wheels [34].

Besides these methods, a variety of more exotic approaches
exists. For example, tunable illumination devices are common
in cultural heritage imaging [35]. Beam splitters were used
since the 1950s in television cameras [24], which divide light
beams into different fractions similar to prisms. Interferometer
based techniques [36], filtered lenslet arrays [37], division of
focal plane polarimeters [38], spectrometers [39], multi-view
multi-spectral mirror systems [40], and tunable sensors [41]
can be named, too. These methods are tied to specify problems
and are used in few industrial and professional applications.

Recently, also cross-spectral stereo camera approaches came
up that combine, e.g., a color and an infrared camera for
measuring multiple spectral components [42]. As image con-
tent is recorded at different spatial positions, the aim is to
register heterogeneous content. Some algorithms focus only
on the registration of objects in one depth plane, which
results in a global transform and gives no depth information
on the scene [43]. A more complicated task is the regis-
tration of objects in varying depth levels, which makes it
necessary to estimate a 3D scene for mapping the recorded
images onto a common viewpoint. For example, one can
combine a structural template matching cost function, e.g.
Census Transform, and a traditional cost aggregation algo-
rithm like Semi-Global Matching (SGM) to estimate a dis-
parity map that is used for pixel-wise registration [44]. Other
approaches deal with the design of further cost metrics,
e.g., Robust Selective Normalized Cross Correlation (RSNCC)
[45], or Dense Adaptive Self-Correlation (DASC) [46], to
enhance registration performance. Recently, also an unsuper-
vised deep-learning based approach was presented for RGB
and NIR content, while incorporating knowledge on fixed sets
of materials [42]. To acquire multi-spectral data, the number

TABLE I

PROS (+) AND CONS (−) OF MULTI-SPECTRAL IMAGING TECHNIQUES
AND THE NOVEL CAMERA ARRAY FOR MULTI-SPECTRAL IMAGING.

A MIXED PERFORMANCE IS INDICATED BY CIRCLES (o)

of spectral components has to be increased [47]. However,
cross-spectral stereo and multi-camera setups mainly focus on
the design of cost metrics for registration. On this occasion,
the cost fusion from all available cameras is mostly omitted as
well as the problem of reconstructing occluded or mispredicted
pixels, although a lot of spatial and spectral information is
exploitable for registration and reconstruction.

The breakthrough of multi-spectral imaging is impeded by
the different disadvantages of existing acquisition systems.
A perfect setup would allow recording high-resolution image
and video data, while filters are exchangeable according
to the user’s demands. Furthermore, the setup has to be
operable independent of the filter configuration, e.g., color,
bandpass, or polarization filters. Moreover, the system must be
price-efficient and suited for the consumer market, as well as
inexpensive for small batch sizes. Additionally, a compact con-
struction size is asked to ensure the usage for mobile devices.
For 3D imaging applications, e.g., virtual or augmented reality,
the derivation of depth information is preferable. Likewise,
detection and classification can be significantly simplified
by using depth information. A brief summary of demanded
features and available acquisition approaches is listed in Tab. I.

III. CAMERA ARRAY FOR MULTI-SPECTRAL IMAGING

Before the algorithmic challenges are discussed in the next
sections, the hardware design of the proposed camera array
for multi-spectral imaging setup shall be firstly described.
Therefore, the placement of the different components together
with the camera parameters and the choice of filters are shown.
Afterwards, the problem statement is formulated, which arises
due to the multi-spectral, multi-camera layout. Furthermore,
the versatility and extensibility of CAMSI is examined.

A. Hardware Description

The proposed CAMSI system consists of K = 9 cameras,
with K being selected flexibly depending on the required num-
ber of channels. The different camera positions are denoted as
Pk allowing index k in the range 0 to K − 1 with center
camera position Pc and index c = 4. Cameras are aligned on
a 3×3 grid, so that the displacement from a peripheral camera
to the center is always horizontal, vertical, or diagonal. As a
constraint, the camera array’s size must be chosen quadratic
and the array length must be odd, e.g., 3×3 or 5 ×5, to align
all peripheral views around the center camera. Introducing
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Fig. 3. The proposed CAMSI acquisition system together with the annotated
camera views P0 to P8 with center view Pc = 4. Each camera is mounted
with a different color filter.

TABLE II

PARAMETERS OF THE CAMSI SETUP

geometric restrictions in the hardware design is required in
later software post-processing to reduce computational com-
plexity and to significantly increase registration robustness,
as described in Sec. V in detail. The novel CAMSI prototype
and the annotated positions Pk are shown in Fig. 3.

The cameras are mounted in a solid aluminum enclosure to
ensure a consistent calibration and a good thermal conduction.
The baseline between each camera measures 4 cm, so that
the distance between each peripheral and the center camera
is 4 cm and 4

√
2 ≈ 5.7 cm, respectively. The choice fell on

professional monochrome cameras that record images up to a
resolution of 1600×1200 pixels at 60 frames per second and a
bit depth of 12, while the sensor pixel size measures 4.5 μm.
The cameras are connected to a PC via Gigabit Ethernet
while being synchronized using the camera trigger feature to
ensure that all cameras take the pictures at the same time and
still as well as moving content is recordable. Furthermore,
the cameras allow for an easy mounting of different lenses,
so that a wide range of problems can be tackled with this
setup. For CAMSI, 16 mm prime lenses were installed that are
convenient for all filters ranging from approx. 300 to 1000 nm.
An overview of the parameters of CAMSI is depicted in
Tab. II. Professional image processing color filters were used
together with steep 50 nm band pass filters from stock to
record color, ultra-violet, and near infrared images. The filter
configurations used in this paper are depicted in Tab. III.

B. Problem Formulation

When acquiring images using the CAMSI setup, K record-
ings I0 to I K−1 result that measure different spectral com-
ponents at positions P0 to PK−1 at the same time instance.

TABLE III

TWO EXEMPLARY FILTER CONFIGURATIONS
FOR THE EQUIPMENT OF CAMSI

In contrast to this, measurements of different subbands are
required at the same spatial position for most applications.
Consequently, the goal is to calculate a virtual center view
of all recordings by applying a pixel-wise transformation to
each image, which is possible as long as depth information
is disposable and the distances between the cameras are
known. Hence, depth must be calculated to warp the different
peripheral positions onto the center Pc that serves as basis.
In principle, deriving depth-information from multi-camera
setups is a well-investigated problem statement [48], [49].
Typically, these methods require the same image content in
the different views. Obviously, this is not the case for CAMSI
as different spectral bands are measured at different camera
positions. On the one side, the recording of multi-spectral data
impedes the derivation of depth information. On the other side,
depth information is needed to register the different subbands
and to obtain a multi-spectral image. In contrast to state-of-the-
art approaches that introduce further cost functions, this typical
chicken-and-egg situation is solved by introducing a novel
depth estimation method in Sec. V that combines information
from all available cameras to improve accuracy. Moreover,
loss areas that arise during the registration due to occlusions
and mispredictions are estimated by a novel cross-spectral
reconstruction algorithm (see Sec. VI), which also takes all
available spectral components into account. An overview of
the proposed CAMSI processing chain is given in Fig. 4
together with the required processing steps.

C. Versatility and Extensibility

A core feature of CAMSI is its versatility. Firstly, it is
possible to capture a dynamic number of different spectral
components by modifying the hardware layout. As long as
the peripheral cameras are located around a center view, these
geometric constraints are exploitable and result in a robust
registration. The proposed sensor layout can be easily extended
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Fig. 4. Overview of the proposed CAMSI chain. The calibration of the
camera array is carried out only once. Afterwards, the estimated homography
transformations are used to calculate multi-spectral images.

to obtain hyper-spectral images by using 5 × 5, 7 × 7 or
even larger array grid sizes. Secondly, the combination and
arrangement of filters is independent of each other as a global
depth estimation is conducted in Sec. V. Thus, the array can
be set up without taking the filter transmissions or further
a priori knowledge into account. Thirdly, the filter types can be
arbitrarily chosen as long as there is an overlap of the spectrum
of some filters. Hence, the design is highly adaptable to any
specific user requirements.

IV. CALIBRATION AND RECTIFICATION

In practical implementation, all cameras exhibit arbitrary
displacements to each other. On the one side, it is not possible
to perfectly align the cameras onto the array grid. On the other
side, the image sensor may not be installed precisely enough in
the camera body itself. Consequently, all cameras in the array
must be calibrated with respect to the central camera before
a registered multi-spectral image can be calculated. In the
following, it is assumed that the intrinsic camera parameters,
e.g., lens distortions, are already compensated using methods
like [50] or [51]. Thus, only the extrinsic calibration due to
manufacturing tolerances is discussed.

After recording the different images, the corresponding
pixels are misplaced both in horizontal and vertical direction at
the same time. In a perfect setup, the displacement should be
purely horizontal, vertical, or diagonal, which is not applicable
in practice. The aim of the proposed calibration is to align the
views back on the virtual CAMSI array grid and to resolve
the arbitrary displacement to a one-dimensional disparity.
Consequently, the disparity must be still determined on the
epipolar lines, later. The remaining one-dimensional disparity
remains due to the objects being placed in different depths,
which yields pixel dependent displacements. An example for
the middle row of the CAMSI array is given in Fig. 5, where
the composition of {I5, Ic, I3} results in a color image { red,
green, blue }. On the left-hand side, the uncalibrated images
are composed and the shift appears to be arbitrarily two dimen-
sional. On the right-hand side, the calibrated image is depicted.
Apparently, the objects are only displaced horizontally after
rectification.

Briefly, the planar homography relates to the transformation
between two planes. By recording a calibration pattern in front
of all cameras, it is possible to estimate the homography of the
planes which includes the pattern. Consequently, the displace-
ment for the peripheral and the center camera can be corrected.

Fig. 5. Recordings of the images {I5, Ic, I3} lead to a color image. On the
left-hand side, the color components are not calibrated and suffer from a
depth-dependent shift. On the right-hand side, the channels have been rectified.
Consequently, the color channels are aligned for the calibrated depth plane
in the background. The remaining shift in color channels results due to the
horizontal disparity of the cameras.

Fig. 6. A pairwise calibration approach is used in CAMSI. All peripheral
camera views are calibrated with respect to the center view.

In contrast to traditional image rectification, which is typically
used for stereo imaging [52], the transformation between all
peripheral cameras and the center is estimated, while only the
peripheral positions are warped onto the center. An overview
of the proposed scheme is given in Fig. 6.

The decision regarding the calibration pattern was made in
favor of using a checkerboard as this is a well-investigated
approach, which is proven to work robustly and accurately.
Firstly, the calibration pattern must be detected in every
recording. Therefore, the features are extracted using the
approach in [53]. By providing prior knowledge about the
pattern, e.g., number of boxes and geometry and by utilizing a
pattern that is visible in all spectral components, the estimation
of the features works reliable even for the different color and
bandpass filters mounted in front of the cameras. Using two
feature lists, which contain the chessboard corners for one
peripheral and the center position, the transformation matrix
T k is estimated for every image Ik

T k =
⎛
⎝a1 a2 b1

a3 a4 b2
0 0 1

⎞
⎠ (1)

using the methods from [54], [55]. Thereby, the point corre-
spondences are robustly estimated using an extended random
sample consensus algorithm to calculate the homography.
As one can see in Tk , the free choice of parameters a1
to a4 and b1 to b2 allows describing translation, rotation,
scaling, shearing and tilting. Thus, the projective homography
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transformation is formulated as⎛
⎝x̂k

ŷk

1

⎞
⎠ = T k

⎛
⎝x

y
1

⎞
⎠ , (2)

which describes the corrected pixel positions (x̂k, ŷk) for
every peripheral view Pk . By warping the peripherals view
independently, all spectral components J k are rectified to the
central camera position, but only for the depth in which the
calibrated chessboard pattern was located. For the compen-
sation of the remaining one-dimensional disparity in other
depths levels, it is necessary to resample the transformed pixels
at floating-point positions back to a regular grid. Therefore,
the fast triangulation-based cubic interpolation [56] is used.

V. REGISTRATION

After calibration and rectification, the images still yield a
one-dimensional disparity. In the following, an appropriate
disparity estimation method is presented, which is suitable for
multi-spectral imaging in contrast to existing state-of-the-art
algorithms. Firstly, the relationship between depth and dispar-
ity will be shortly summarized. Secondly, a novel fast one-
dimensional disparity estimation for multi-spectral imaging
is introduced, which is calculated globally for all cameras.
In the end, a pixel transform is derived, which combines
both calibration and registration information to avoid multiple
concatenated image resamplings that would introduce blurring.

A. Disparity and Depth

Disparity information can be transferred to a depth map
using the triangulation relationship

d = B · f

z · p
(3)

with baseline B , focal length f , sensor pixel size p and depth
z. This relation holds if the optic axes of the cameras are par-
allel, which is assumed for the CAMSI setup. Consequently,
the depth information is directly derivable by evaluating above
equation for the pixels of interest. As already shown in Tab. II,
the constants B , f and p are given for the CAMSI setup.
Furthermore, the relationship between disparity and depth is
inversely proportional. Hence, a high depth indicates a low
disparity and vice versa.

The smaller the hardware implementation can be conducted,
the smaller is the disparity due to the reduced baseline distance
between the cameras. Consequently, it is advisable to shrink
the hardware design as much as possible to achieve a faster
and more robust disparity search.

B. Fast One-Dimensional Disparity Estimation

In contrast to traditional stereo camera setups that deal with
the registration of the same image content seen from different
positions, the CAMSI approach has to register images at
various positions, which also contain different spectral content.
Consequently, the difficulty significantly increases to achieve a
registered image compared to traditional stereo imaging. In an
initial exploration, several state-of-the-art algorithms have

Fig. 7. The cross-spectral extinction effect demonstrated for three compo-
nents of the flowers image [57]. From top to bottom, a 10 nm bandpass with
CWL 470 nm, the green component, and a 10 nm bandpass at CWL 710 nm
serve as example. Each row depicts the normalized gradient [47] for every
pixel. Apparently, structure can be negatively correlated, or even vanished.

been discussed (see Sec. II) to perform pairwise registrations
of the center view and the various peripheral views. Altogether,
neither widely-distributed template matching-approaches, e.g.,
[58], nor deep learning methods [59] provide a satisfactory
solution due to the large deviation of the image content.
For deep learning algorithms, another problem is the limited
amount of multi-spectral, multi-view training data, which
restricts a reasonable application. The main challenge for the
registration is to allow any combination of spectral filters in
the proposed camera array. Cross-spectral registration methods
rely on comparing structural features, e.g., gradients, or devi-
ations, to find the pixel-wise relationship. However, image
content often significantly changes its properties across the
recorded spectra. Especially, the correlation between edges
can flip or structure vanishes at all, which leads to cross-
spectral extinction as shown in Fig. 7. The normalized gradient
[47] of the flowers image from [57] is depicted for the
green component as well as two 10 nm bandpass filters with
CWLs 470 nm and 710 nm. Apparently, combining costs by
multiplication [47] leads to extinction and should be avoided
especially when combining costs of even more spectral compo-
nents. Therefore, a novel global cross-correlation registration
is proposed that estimates a central disparity map by taking
many pairwisely estimated cost functions into account, while
overcoming the cross-spectral extinction problem. In line with
this, every camera should only contribute good matches to the
central disparity map, so that the setup becomes independent
of the chosen filters. For CAMSI, the disparity estimation is
performed for each peripheral position with respect to the
center view. Hence, for the proposed array size of K = 9,
eight estimations have to be conducted.

The disparity relationship between the different positions in
the camera array is basically two-dimensional. However, due
to the fixed arrangement of cameras in the array, the disparity
search can be reduced to one-dimensional directions. A one-
dimensional representation is chosen, such that the calibrated
views have only a pure horizontal, vertical, or diagonal rela-
tionship. Therefore, it is proposed to search for candidates
only horizontally, while all other cases are handled by rotating
the images pairs by +90, +45 and −45 degrees, respectively.
An overview of the disparity search dimensionality reduction
is depicted in Fig. 8. As can be seen for the middle line of
the camera array, no adjustment has to be made. In contrast,
the second column must be rotated by 90 degrees, while the
diagonal images are rotated by −45 and +45 degrees.

Then, the simplified one-dimensional registration between
each center and peripheral view pair can be conducted. To give
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Fig. 8. The two-dimensional relationship of the different camera views is
simplified by rotating the recordings in accordance with their position.

Fig. 9. Processing overview of the novel CAMSI registration approach. The
calibrated recordings are used to estimate a global disparity map for the center
view. Accordingly, the center disparity map is transformed to the peripheral
views and used to register all recordings.

an overview of the procedure, a flowchart is shown in Fig. 9,
which divides the registration problem into different sub-
tasks. The first step is to calculate the matching costs using
Zero Mean Normalized Cross-Correlation (ZNCC) [60], which
compares the structure of two zero-mean signals. In contrast
to other metrics, e.g., SAD, SSD, or Census [58], the ZNCC
is substantially more robust for the CAMSI setup as the image
content differs significantly for multi-spectral images. For two
vectors a and b, ZNCC is defined as

ZNCC(a, b) = − 〈a − a, b − b〉
||a − a||2 · ||b − b||2

(4)

with a and b being the mean values of both input vectors. For
ZNCC, costs can take values between −1 and +1, while −1
describes the maximum positive correlation, zero depicts no
correlation and +1 denotes the maximum negative correlation
between the signals a and b. For an image of size M × N
and D depth levels that shall be investigated, costs Mc�→k ∈

R
M×N×D are obtained by evaluating the ZNCC between the

center and the peripheral view k. By calculating

(Mc�→k)x,y,d = ZNCC(Ic(r), J k(r + d)) (5)

for every pixel coordinate (x, y) and all investigated depth
levels d ∈ D, one obtains costs for every matrix entry
(Mc�→k)x,y,d of the cost matrix Mc�→k . In the following, let
(Z)x,y,d be the operator for accessing an element at index
(x, y, d) in the exemplary matrix Z, while the notation c �→ k
states that the center recording is mapped to the camera
position Pk . In above equation, r denotes the region of interest
around the current position (x, y) using an experimentally
determined support window of size W = 7. Varying W con-
trols the sharpness and noise level of the disparity estimation.
Thus, small window sizes lead to sharper disparity maps, but
include noisy mispredictions and vice versa. For pixels at the
image borders, missing entries are padded by repeating.

To assess the quality of the estimation, a search is also
performed in the opposite direction from the peripheral view
k to the center view, which leads to the cost matrix

(Mk �→c)x,y,d = ZNCC(Jk(r), Ic(r + d)) (6)

At this point, the differing baselines of the CAMSI setup must
be taken into account. In fact, the disparity search range D
must be increased by a factor

√
2 for the diagonal camera

locations k = {0, 2, 6, 8} as a wider search region has to be
investigated. Thus, the resulting cost matrices Mc�→{0,2,6,8} and
M{0,2,6,8}�→c ∈ R

M×N×	√2D
 result. To obtain D disparity
levels again, the cost matrices are filtered using a fast box
filter and sampled according to the required dimensionality.

Given both cost estimations, the disparity maps

Dc�→k = arg min
(d)

{Mc�→k} (7)

and

Dk �→c = arg min
(d)

{Mk �→c} (8)

are obtained by total cost minimization, respectively. After-
wards, the cross-checked cost matrix

Xc�→k = 1

|Dc�→k − Dk �→c| + 1
Mc�→k (9)

is formulated, which takes the discrepancy between both
estimations into account. Hence, (9) gives untrustworthy esti-
mations a lower weight, while good matches are unaffected.

After calculating the cost matrix Xc�→k for every peripheral
camera view, a cost fusion is conducted to achieve a robust
estimate, which makes use of all camera views. According
to Fig. 9, this step consists of three different methods that
are combined. Firstly, the matrices are averaged to obtain the
global cost matrix

Cglobal = 1

K − 1

∑
k∈K

Xc�→k . (10)

In above equation, set K = {0, . . . , K−1}\{c} holds all camera
view indices except the center index. Apparently, uncertainty
gets averaged in the estimations due to multiple cost functions
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Fig. 10. Overview of the proposed histogram maximization. On the left-hand
side, different sections of the various disparity maps are shown. On the
right-hand side, a majority decision is conducted for every entry to find the
most-likely disparity value (highlighted).

that are combined. Typically, cross-spectral stereo matching
algorithms include a cost aggregation step [44] to denoise the
cost maps Xc �→k [61]. In contrast, CAMSI skips an implicit
cost aggregation step due to the high number of available cost
matrices that are combined. This can be already interpreted as
a high-quality aggregation.

Given a smooth cost matrix, a total cost minimization results
in the disparity map

Dglobal = arg min
(d)

{Cglobal}, (11)

by selecting the disparity that stores the lowest costs per pixel.
Secondly, to increase the robustness of the registration even

further, the correlation properties of ZNCC are taken into
account. As recorded objects can flip brightness over the
spectral components, it is advisable to investigate not only the
positive but also the negative correlation. Hence, the global
sign invariant cost matrix results in

Cabsolute = 1

K − 1

∑
k∈K

|Xc�→k | (12)

similar to (10). In contrast to (11), the disparity map results
in a total cost maximization

Dabsolute = arg max
(d)

{Cabsolute} (13)

as costs close to 0 indicate no correlation and costs close to
+1 show a high positive or negative correlation.

Thirdly, the disparity distribution itself is taken into account.
Therefore, the distribution matrix Cdistribution ∈ R

M×N×D is
calculated, which stores the disparities that are estimated for
the various camera views. Cdistribution stores a histogram for
every pixel position (x, y) that shows the absolute frequency
of the disparity estimations per disparity level d for all maps
Dk . Consequently, the disparity map

Ddistribution = arg max
(d)

{Cdistribution} (14)

is calculated by choosing the most likely disparity. This third
criterion can be interpreted as non-linear majority decision for
every disparity entry and all camera recordings (see Fig. 10).

Given the three estimations, the combined disparity map

D = median{Dglobal, Dabsolute, Ddistribution} (15)

Fig. 11. A section of the disparity map and the respective ZNCC matching
costs for the image set NIR/RGB/UV Lab (see Fig. 17). On the left, the
disparity map calculated by the CAMSI method is shown. Due to the novel
global registration, the map is smooth and accurate at the same time. On the
right, the according ZNCC matching costs are given. Dark pixels indicate a
trustworthy match, while bright regions depict more uncertain decisions.

is calculated by applying a median filtering, so that the positive
and negative correlations as well as the distribution over the
cameras are taken into account. Furthermore, the combination
of costs is defined similarly as

C = median{|Cglobal|, |Cabsolute|, |Cdistribution|}. (16)

Afterwards, the disparity map D is refined by applying
two filtering operations. Firstly, a peak filtering is conducted
that identifies connected areas consisting of less than 1000
elements that are only allowed to differ one pixel. Instead
of removing the identified pixels from the disparity map,
the according costs are set to zero in the cost matrix C to mark
them for strong filtering. Then, a cost adaptive median filter
is applied, which adjusts the filter size of the median filter
according to the trustworthiness of the disparity estimation.
The filter strength F is estimated for every position (x, y) as

(F)x,y =
⎧⎨
⎩

0, (C)x,y > Fth⌊
Fmin−Fmax

Fth
min
(d)

{(C)x,y}+Fmax

⌋
, else

(17)

with minimal filter window size Fmin = 3, maximal window
size Fmax = 15, and cost threshold Fth = 0.5. In (17), Fth
ensures that trustworthy matches in the disparity map are
not affected, while Fmax defines the filter strength for the
worst candidates and Fmin for more convenient entries in the
disparity map D. After filtering, the refined disparity map R
results for the central camera position.

Finally, an exemplary disparity map section is shown
in Fig. 11 together with the according ZNCC matching costs.
Apparently, the proposed CAMSI registration achieves smooth
and sharp disparity maps even for differing spectral images.

C. Pixel Transformation

After estimating the disparity, R is applied to warp the
peripheral views to the center image. Since multiple mesh
to grid resampling steps would have a negative effect on the
quality, the estimated calibration matrices T k from Sec. IV
and the disparity map from Sec. V are combined instead
of warping the already calibrated images for another time.
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In order to achieve this, an according disparity map has to be
calculated for the peripheral views. Therefore, the direction of
the displacement must be taken into account (see also Fig. 8).
Hence, the camera position dependent displacement sign

sk =
{

−1, for k = {0, 1, 3, 6}
+1, else

(18)

is obtained. Parameter sk is used to describe the direction
where the peripheral camera is located with respect to the
central camera. Due to the proposed one-dimensional disparity
estimation, each rotated peripheral view is located either left
(−1) or right (+1) from the rotated center (see Fig. 8). Besides
sk , also the spatial position of disparity values has to be
adapted for deriving the peripheral map. Thus, the peripheral
disparity maps result in

(Rk)x,y =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

sk(R)x+sk(R)x,y , y, k = {3,5}
sk(R)x+sk(R)x,y , y−sk(R)x,y , k = {0,8}
sk(R)x+sk(R)x,y , y+sk(R)x,y , k = {2,6}
sk(R)x,y−sk(R)x,y , k = {1,7}

, (19)

by taking the epipolar geometry constraints between the
peripheral camera views and the central position into account.
As the displacement is known for every pixel from the center
to the peripheral camera, one can also formulate the disparity
map from the peripheral camera to the center, which is stated
in (19). The resulting disparity maps Rk are defined for the
integer grid camera positions, where the peripheral images
would be expected. Unfortunately, the rectification moves the
raw recordings to floating-point positions. Hence, the disparity
maps Rk are resampled to the positions of the calibrated
images J k to obtain the corrected disparity maps Sk using
triangulation-based cubic interpolation [56].

Afterwards, the position dependent displacement

vk =
⎛
⎝ x̃k

ỹk
1 . . . 1

⎞
⎠ ∈ R

3×M N (20)

which contains the registration information for every pixel
position (x, y), is determined and added to the mesh locations
after calibration. As vk is position dependent, the peripheral
disparity maps Sk are reformulated as vector and inserted in

(x̃k) j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(Sk) j/N, j−� j/N�N , for k = {3, 5}
(Sk) j/N, j−� j/N�N , for k = {0, 8}
(Sk) j/N, j−� j/N�N , for k = {2, 6}
0, for k = {1, 7}

(21)

and

( ỹk) j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, for k = {3, 5}
−(Sk) j/N, j−� j/N�N , for k = {0, 8}
(Sk) j/N, j−� j/N�N , for k = {2, 6}
−(Sk) j/N, j−� j/N�N , for k = {1, 7}

, (22)

respectively. The calculation of j/N and j − � j/N�N trans-
forms the vector index j to the row and columns indices
x and y. To go more into detail, e.g., case k = {3, 5} describes
the horizontal displacement, which only requires x̃k to be

Fig. 12. Registered red channel Ĩ5 of image set NIR-RGB-UV Lab (see
Fig. 17) using the proposed CAMSI registration method. The black areas
indicate the missing and occluded pixels that have to be reconstructed.

modified. To the contrary, ỹk changes for vertical camera dis-
placements. Moreover, the diagonal camera positions require
the signs in (22) to be modified according to the rotation angle,
which was presented in Fig. 8. Thus, the final mesh points⎛

⎝ x̌k

y̌k
1 . . . 1

⎞
⎠ = T k

⎛
⎝ x

y
1 . . . 1

⎞
⎠ + vk (23)

are formulated that both include calibration and disparity.
Finally, the warped image has to be resampled to integer

grid positions again. Due to the combination of calibration
and disparity information, the mesh points are not equally
distributed anymore. Consequently, it is important to define
the maximum distance that is allowed for interpolation of
the grid points. In the following, α-shapes [62] with a radius
of one pixel are used to define the set of image points that
can be interpolated. Hence, every grid entry that has at least
one adjacent pixel in radius of one pixel is interpolated.
Every excluded grid point has to be reconstructed according to
Sec. VI. Regarding the interpolation, the triangulation-based
cubic interpolation [56] is utilized to obtain the registered
images K k . Thus, a registration like Fig. 12 is obtained, which
has to be reconstructed in the following.

VI. RECONSTRUCTION

The registered images K k contain losses at various positions
due to occlusions and mispredictions. The center image is fully
preserved and can serve as reference for any distortion in every
image. Moreover, it is very likely that losses are located at
different positions for the various images as occlusions are
dependent on the camera position. Consequently, a promising
approach is to reconstruct the missing information by exploit-
ing the spectral similarity as multiple references are available
for every lost pixel. Hence, the reconstruction is interpreted as
combined linear regression problem to estimate the distorted
areas in the images K k .

Therefore, every image K k is partitioned into square-shaped
blocks B ∈ R

2×2. For every block, the reconstruction area
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Fig. 13. Partitioning of the block-based reconstruction method for CAMSI.

L ∈ R
12×12 is defined, which surrounds B and contains the

known pixels A and the inner and outer losses Bi and Bo
(see. Fig. 13). Each reconstruction of a block B is treated as
independent problem and an arbitrary processing order can
be chosen. We use the optimized processing order from [63]
for each image K k . The algorithm ensures that distortions are
closed from the outer margin to the inside, so that the available
support area is maximized. Moreover, the execution can be
significantly fastened by processing unconnected losses in
parallel, so that a higher computational efficiency is achieved.

After dividing the current distorted image K k into a set
of blocks B, the block-based reconstruction is performed.
Therefore, the current distorted block B is written as vector
s and the according reference blocks from the images K i

with i ∈ {0, . . . , K − 1} \ k are depicted as r i . The goal
is to reconstruct the distorted vector by taking all undistorted
references into account. For model generation, it is necessary
to exclude the unknown samples from the distorted and the
reference vectors. By allowing only undistorted entries of
s, vector s̃ is obtained. The adjusted references r̃ i result
after discarding samples, where s contains unknown entries.
As reference views r̃ i , which contain distortions themselves,
are unsuitable to reconstruct s, the set U is defined that only
allows completely conserved reference views r̃u with u ∈ U .

We calculate a linear regression between every reference
block and the distorted block to approximate

s̃ ≈ au · r̃u + bu (24)

with slope and offset scalars au and bu . These are determined
by minimizing the squared model error

min
au,bu

||au · r̃u + bu − s̃||22 (25)

of the linear regression model.
The minimization problem is solved by applying a least

squares fitting. Then, parameter au is calculated as

au = 〈r̃u − ru, s̃ − s〉
〈r̃u − ru, r̃u − ru〉 (26)

and parameter bu results in

bu = s − au · ru , (27)

with the average values s and ru of the distorted and the
reference block. Thus, the prediction can be written as

pu = au · r̃u + bu . (28)

By taking all suitable views into account, the combined
prediction is formulated as linear combination of

p =
∑
u∈U

ŵu · pu (29)

using weights ŵu . The weights are calculated with respect to
the mean residual error

eu =
√

1

|L \ {Bu ∪ Bo}| 〈s̃ − p̃u, s̃ − p̃u〉. (30)

To penalize untrustworthy predictions further, wu is formu-
lated as

wu = ρeu . (31)

An experimentally determined parameter ρ = 0.8 is used to
control the decay of the weighting function and all weights
are normalized by

ŵu = wu∑
u∈U

wu
. (32)

Given the normalized weights, the prediction p of (29) can be
calculated and the reconstruction

ŝ =
{

p, p ∈ Bi

s , else
(33)

results in estimated samples for the distortions in Bi, while
original samples remain unchanged.

The block-based reconstruction is repeated until all distor-
tions in every image are concealed. Thereby, already recon-
structed pixels are used for the reconstruction of further
pixels, but only in the same image. Thus, the reconstructions
of different images are independent of each other and the
reconstruction can be fully parallelized.

VII. EVALUATION

To evaluate the performance of the proposed CAMSI sys-
tem, several image sets and videos were recorded. Moreover,
ground truth data was acquired for the images by sequentially
mounting all utilized filters in front of the center camera. These
references can be interpreted as Tunable Filter setups, e.g.,
filter wheels, which provide a high spatial, but a restricted
temporal resolution. Consequently, ground truth data can be
provided for the images and not for the video data. The
first image set NIR-RGB-UV Lab shows different objects,
e.g., plants, liquids, and test patterns, in different depths
that are placed on a table. For the recordings, the filter
configuration NIR-RGB-UV from Tab. III has been used.
Furthermore, the second image set depicts different artificial
plants, e.g., trees, orchids, which are captured under bad light
conditions. For this, the filter set NIR-RGB-NIR from Tab. III
was mounted. Both data sets consist of the images taken at the
nine array positions as wells as ground truth images recorded
from the center position. The distance between camera and
objects was between 2.3 and 3.0 meters. Moreover, a third data
set using the configuration NIR-RGB-UV shows an outdoor
video with buildings, forested areas and a cloudy sky. Indeed,
only CAMSI images can be provided as the scene is dynamic,
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Fig. 14. Recorded test scene using the filter configuration NIR-RGB-UV for
evaluating the registration accuracy. On the left, the green channel is depicted
as an example together with the highlighted regions that are used to measure
the accuracy. On the right, the according disparity map is shown, which was
generated by applying CAMSI.

so that ground truth is not anymore acquirable. The distances
between camera and the recorded objects range between
several meters and a few kilometers. In the following, a small
part of the data set is shown. All recordings together with
the CAMSI reconstructions are publicly available1 to invite
researchers for participating in the proposed approach.

A. Registration Performance

At first, the registration performance of the novel CAMSI
approach is compared to state-of-the-art cross-spectral dis-
parity estimation techniques. Therefore, the depth resolu-
tion capability of two state-of-the-art methods and CAMSI
is examined. As depth and disparity are inversely propor-
tional, the depth resolution accuracy provides insight into
the cross-spectral registration quality, as well. To measure
the performance of disparity and depth estimation, an image
set was recorded that contains six objects in varying depth
levels while providing the ground truth camera distances
for each object. Fig. 14 shows the recorded scene with
highlighted marker regions and the estimated disparity map
that is obtained after applying CAMSI. The highlighted
regions are used to calculate an average depth μz as well
as depth deviation σz using the relationship shown in (3).
This procedure is repeated by generating further disparity
maps by applying two state-of-the-art cross-spectral stereo
matching algorithms, namely Census + SGM [44], [58], [64]
and CCNG+SGM [47], [64]. The resulting disparity maps
are averaged, so that a combined map is generated, which
takes all camera view-points into account. Nevertheless, both
approaches suffer from cross-spectral extinction which results
in visually distorted disparity maps. Tab. IV depicts the depth
resolution accuracy for the two state-of-the-art methods and
the proposed CAMSI algorithm. Apparently, CAMSI achieves
a significantly higher accuracy and a low deviation. Due to the
global cost aggregation, a robust disparity map is estimated
that does not suffer from cross-spectral extinction.

For further analysis, the selection of the utilized cost metric
is evaluated. Therefore, (4) is exchanged to Census Transform
[58] and CCNG [47], respectively. As all three approaches
compare the structural similarity of image patches, no signifi-
cant deviation regarding the overall performance of CAMSI
is expected, which can be seen in Tab. V. Nevertheless,
the default ZNCC cost metric performs best, which can be

1CAMSI images and evaluation: https://gitlab.lms.tf.fau.de/lms/camsi

TABLE IV

ACCURACY OF DEPTH ESTIMATION FOR THE PROPOSED CAMSI
APPROACH COMPARED TO STATE-OF-THE-ART CROSS-SPECTRAL

STEREO MATCHING ALGORITHMS

TABLE V

INFLUENCE OF THE APPLIED COST METRIC ON THE RECONSTRUCTION

QUALITY WHEN USING THE PROPOSED GLOBAL COST AGGREGATION

Fig. 15. Impact of the number of channels used in global cost aggregation to
set up the central disparity map evaluated on the NIR-RGB-UV Lab images.

explained by taking the global cost aggregation of CAMSI into
account. As CAMSI combines global averaging, sign invariant
global averaging and a histogram analysis, it is very unlikely
that structural information is extinct during combination. This
advantage gets also apparent when analyzing the influence
of the number of utilized cameras for generation of the
global disparity map (see Fig. 15). A higher number of cam-
eras are beneficial for the total reconstruction quality, which
demonstrates the robustness of the proposed global CAMSI
registration algorithm against cross-spectral extinction.

B. Comparison to Related Multi-Spectral Imaging Techniques

For analyzing the performance of the proposed CAMSI
approach, a comparison to state-of-the-art MSFAs (see Fig. 2a)
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Fig. 16. Comparison between the simulated MSFAs and the proposed CAMSI method for different state-of-the-art demosaicing algorithms and varying data
sets. The rows depict different image sections of the recorded data sets NIR-RGB-UV Lab, NIR-RGB-UV Office View, and NIR-RGB-NIR Low Light. The first
three columns show the demosaicing results using TRIC [56], BTES [65], and ARI [66], respectively. Fourth column depicts the results using the proposed
CAMSI approach, while last column gives the recorded ground truth data as reference.

is given. Therefore, the ground truth data of the image sets
NIR-RGB-UV Lab and NIR-RGB-NIR Low Light was subsam-
pled by a factor of three in horizontal and vertical direction.
Many recent approaches, e.g., [66], [67], sample the green
channel with half the sampling rate, while the remaining pixels
are distributed equally to the other channels. Consequently,
the green channel is reconstructed at first and further used
as guidance for demosaicing all other components to achieve
a high reconstruction quality. In line with this, the green
channel of the ground truth data was sampled by 50 % and all
other components with a rate of 6.25 %. For demosaicing,
triangulation-based cubic interpolation (TRIC) [56], Binary
Tree-Based Edge-Sensing (BTES) [65], and the recently pub-
lished Adaptive Residual Interpolation (ARI) [66] are applied.
While spatial interpolation, e.g. TRIC, is well suited for high
sampling densities [68], BTES [65] and ARI [66] exploit
both spatial and cross-spectral information. Afterwards, four
objective metrics (PSNR, SSIM [69], VMAF [70], BRISQUE
[71]) are calculated to evaluate the quality of the MSFA and
CAMSI. PSNR, SSIM, and VMAF are full reference metrics
and require the reconstructed as well as ground truth images.
In contrast, BRISQUE is designed as no-reference metric that
does not depend on ground truth data. Tab. VI, depicts the
evaluation results for the simulated MSFA and the proposed
CAMSI approach. The BRISQUE values in brackets depict
the results for the unaltered center view. Hence, the influence
of the CAMSI processing chain can be set in relation to the
achievable quality of the recorded scene. Apparently, CAMSI

is able to achieve a higher quality compared to the MSFA for
all investigated data sets and for every applied demosaicing
approach and metric. This behavior can be visually verified
when looking at Fig. 16. There, a comparison between the
simulated MSFA and CAMSI is given for different image sec-
tions of varying data sets and three spectral filters. Apparently,
MSFAs suffers from aliasing and blurring that reduces the
objective as well as the visual quality in contrast to CAMSI.
However, this comes at the price that small artifacts can occur
for CAMSI at depth inconsistencies, when parts of objects are
occluded.

C. Visual Examples of Image and Video Data

In addition to the objective results, the visual quality of the
CAMSI approach shall be analyzed. In Fig. 17, the computed
CAMSI images are shown together with the ground truth data
and difference images. A closer look reveals small artifacts
especially at the border of the plants or at edges that are
slightly misplaced. Additionally, one can see a small difference
that is distributed over the complete image due to slight
illumination differences of the ground truth data and the
proposed CAMSI images. These differences are not introduced
by the proposed CAMSI system, but are already contained in
the recordings. For an enhanced visual experience, the full
resolution images are included in the previously provided
link1 together with further CAMSI results, e.g., for the NIR-
RGB-NIR Low Light filter configuration. In the additionally
available data sets, it becomes apparent that CAMSI works
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Fig. 17. Overview of the visual quality of the proposed CAMSI acquisitions. On the left, the recordings of CAMSI are shown together with the achievable
PSNR and SSIM. In the middle and on the right, ground truth and difference images are given. The middle row shows the true color images, while first and
third line depict false color representations. Central wavelengths of the utilized filters are added to every image. The examples are best to be viewed enlarged.

very well for arbitrary filter setups, homogeneous and hetero-
geneous image content, as well as different light conditions.

Moreover, the video NIR-RGB-UV Office View shall be
examined. To evaluate the visual quality, Fig. 18 shows the
composed NIR and RGB images generated by CAMSI for
three different points in time. As in the previous examples,
the visual quality is also very pleasing for the recorded video.
Apparently, the clouds drift past during the different points of
time, while the landscape is very static. Regarding the choice
of filters, especially the light beams of the sun are very well
distinguishable in the top NIR images compared to the bottom
RGB recordings and the hydrated clouds become yellow
colored. As shown in Tab. VI, the BRISQUE metric correlates
very well with PSNR, SSIM, VMAF, and the visual percep-
tion. Consequently, BRISQUE is used to evaluate the video
recordings as ground truth data is not applicable. For the NIR-
RGB-UV Office View data set, an averaged BRISQUE value
of 23.17 is obtained for the complete video sequence, which
also corresponds to the high subjective visual quality. When
comparing the BRISQUE results of the CAMSI approach to

Fig. 18. Three sections from consecutive frames of the video NIR-RGB-UV
Office View using the novel CAMSI setup and the filter set NIR-RGB-UV
(see Tab. III). First row shows NIR false color images that were recorded at
positions {P2, P1, P0}. In the second row, color images were generated from
the recordings at positions {P5, P4, P3}.
the center camera recordings (see values in brackets, Tab. VI),
only a small difference is measured. This indicates that the
multi-spectral images acquired by CAMSI come very close to
ground truth acquisitions.
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TABLE VI

EVALUATION RESULTS FOR A DEMOSAICED, SIMULATED MSFA AND THE
NOVEL CAMSI SETUP (PSNR, SSIM, VMAF: THE HIGHER THE

BETTER; BRISQUE: THE LOWER THE BETTER). BRISQUE
VALUES IN BRACKETS SHOW THE QUALITY OF THE

RECORDINGS TAKEN FROM THE UNPROCESSED
CENTER POSITION PC AS REFERENCE

TABLE VII

PROCESSING TIME OF THE CAMSI IMPLEMENTATION WRITTEN IN

MATLAB ON A DESKTOP COMPUTER AND A MOBILE NOTEBOOK

D. Computational Complexity

Finally, the computational complexity of the proposed
CAMSI framework shall be discussed. As camera calibration
has to be conducted only once, the processing time of CAMSI
is dominated by registration and reconstruction. The cost
metric (4) is evaluated for every camera position Pk and all
disparity candidates D, hence registration is more complex
than solving regression tasks for the occluded and mispre-
dicted pixels during reconstruction. Both, registration and
reconstruction mainly calculate mean, variance, and covariance
values of image patches, so that an efficient implementation
could be derived by using integral images [72], [73]. Addi-
tionally, more advanced techniques can be applied to lower the
computation time even further [74], or the algorithms can be
implemented on GPU [75]. For the sake of an intuitive imple-
mentation, CAMSI was written in MATLAB without the usage
of integral images, or any further optimization. To demonstrate
the computational complexity, the CAMSI framework was
evaluated on the test system Desktop, which encloses an Intel
i9-7940X CPU and 64 GB RAM. Additionally, the test system
Notebook was used that is equipped with a i7-6700HQ CPU
and 16 GB RAM. The mean computation time averaged over
100 executions and the specified camera resolution in Tab. II
is depicted in Tab. VII. The algorithms have been parallelized
to exploit the multi-core computer architecture.

VIII. CONCLUSION

In this contribution, a novel multi-spectral imaging sys-
tem is presented. This becomes necessary as a review on

state-of-the-art multi-spectral imaging techniques has revealed
that none of the existing approaches is capable to capture
videos with a high spatial, temporal, and spectral resolution
at the same time. Often, the dynamic application of filters is
equally difficult as designing a handy setup, which is of com-
pact size. A novel approach that can remedy the existing chal-
lenges is the proposed camera array for multi-spectral imaging,
which provides additional depth information. However, this
comes at the price of recording differing spectral images at
various viewpoints, such that algorithmic post-processing is
required after acquisition. By introducing a geometrically con-
strained multi-camera sensor layout, the formulation of novel
registration and reconstruction algorithms becomes possible to
globally set up robust models for generating consistent multi-
spectral videos. The performance of the novel camera array
for multi-spectral imaging is analyzed by giving an extensive
visual and objective evaluation. In comparison to recently
published multi-spectral filter array imaging systems, the novel
acquisition approach achieves an average gain of 2.5 dB
PSNR. Moreover, the recorded data sets are provided online
together with the reconstructed images. In the future, it will
be evaluated whether the novel concept is expandable to
hyper-spectral imaging by extending the geometrically con-
strained multi-camera sensor layout.
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