
IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS 1

Air-writing Recognition, Part 2:
Detection and Recognition of Writing Activity in
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Abstract—Air-writing refers to writing of characters or words
in the free space by hand or finger movements. We address
airwriting recognition problems in two companion papers. Part 2
addresses detecting and recognizing air-writing activities that are
embedded in a continuous motion trajectory without delimitation.
Detection of intended writing activities amongst superfluous fin-
ger movements unrelated to letters or words presents a challenge
that needs to be treated separately from the traditional problem
of pattern recognition.

We first present a data set that contains a mixture of
writing and non-writing finger motions in each recording. The
LEAP from Leap Motion is used for marker-free and glove-
free finger tracking. We propose a window-based approach
that automatically detects and extracts the air-writing event in
a continuous stream of motion data, containing stray finger
movements unrelated to writing. Consecutive writing events are
converted into a writing segment. The recognition performance
is further evaluated based on the detected writing segment. Our
main contribution is to build an air-writing system encompassing
both detection and recognition stages and to give insights into
how the detected writing segments affect the recognition result.
With leave-one-out cross validation, the proposed system achieves
an overall segment error rate (SER) of 1.15% for word-based
recognition and 9.84% for letter-based recognition.

Keywords—air-writing, fingerwriting, air-writing recognition,
air-writing detection.

I. INTRODUCTION

WRITING with a finger on a touch-based interface
is intuitive because it follows the metaphor of pen-

based writing. Recent advances of tracking technology make
it possible to track hand and finger motions without user-
worn devices, and writing motion is no longer restricted on
a physical plane. Air-writing provides a viable alternative
interface for text input, particularly when conventional input
devices, such as a keyboard or a mouse, are not available
or suitable. Compared to other non-traditional input methods
such as typing with a virtual keyboard or similar schemes, air-
writing offers the advantage of “eye-free” execution, requiring
minimum attention focus [1].

When we write with a fingertip in the air and use a
controller-free tracking system such as LEAP [2] to track the
finger motion, the motion data comprises every bit of the finger
movement in an uninterrupted stream, writing or drifting, and
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the intended writing activity is no longer easily or explicitly
located. Thus, the detection and extraction of the writing
signal from the continuous motion data stream is challenging.
With the finger-precision tracking of the Leap device, the
user can write in the air easily with his or her fingertip. To
make the Leap a viable writing interface, nevertheless, an
intelligent system that is capable of handling both detection
and recognition of the air-writing mixed with other stray
movements must be designed. Although some specific finger
movements can used as in-line delimiter signals to provide
endpoint information for a writing activity, writing with these
explicit delimiters hinders the user experience of air-writing.
In this work, we propose a system that automatically detects,
segments, and recognizes the writing part from the continuous
motion tracking signal.

In this work, we propose an algorithm that solves the prob-
lem of detecting air-writing from general finger movements
on a motion-based user interface. Finger motion in the air
contains a fair amount of stray movements unrelated to and
often inseparable from the intended letters or words. To handle
the potentially imprecise detection segments, we re-design the
recognition kernel of [1]. We also evaluate the air-writing
recognition performance based on the detected writing trajecto-
ries to investigate the overall system performance, end-to-end
from writing activity detection to recognition. An overview
of the finger air-writing system is shown in Figure 1. At
the detection stage, the continuous motion data are converted
to individually detected writing segments. At the recognition
stage, the detected segments are processed for the final result,
either a recognition decision or a rejection.

The paper is organized as follows. In Section II, we discuss
the related work of motion tracking, handwriting recognition,
and the segmentation issues. In Section III, we describe the
motion tracking system, the Leap, and data recording proce-
dures for air-writing. Section IV is devoted to air-writing de-
tection. In Section V, we evaluate the recognition performance,
and Section VI concludes this paper.

II. RELATED WORK

Both the speed and the precision of hand tracking are
critical for interactive applications. Glove-based tracking has
been proposed to support hand tracking [3]. However, putting
on a glove may be cumbersome and uncomfortable for a
long session of interaction. Controller-free motion tracking is
believed to bring about the most natural user experience. In [4],
two consumer-grade webcams are used to achieve bimanual
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Fig. 1. The system diagram of controller-free air-writing detection and recognition

6-DOF pose estimation at interactive rates for reliable pose
detection, such as pinching and pointing. This technology
can track the user’s hands to finger-precision and is further
improved to millimeter-level accuracy with 3D cameras such as
Kinect. Leap [2], a small USB peripheral device, is designed to
track fingers (or stick-like objects such as a pen or a chopstick)
precisely in a desktop environment. The smaller tracking
volume and higher resolution of Leap differentiates itself from
Kinect, which is designed for body and face tracking in a
livingroom-like environment.

Online handwriting recognition addresses the problem from
a spatio-temporal point of view, i.e., looking at the writing
trajectory instead of the shape [5]. Hidden Markov models
(HMM) are especially known for their application in spatio-
temporal pattern recognition, including online handwriting
recognition [6], [7]. Cursive handwriting contains successive
letters that are connected without explicit pen-up moves.
Sin and Kim [8] used ligature models to handle the inter-
letter patterns for online cursive handwriting recognition. The
existing online handwriting data, such as UNIPEN [9], are
mostly collected by pen-based devices, which track the 2D
trajectory with the pen-up/pen-down information. When people
write in the air, different types of tracking devices are needed,
e.g., a vision-based hand tracking system [10], inertial sensors
attached to a glove [11], [12], or a depth sensor [13].

For pen-based or touch-based writing, the ink information is
directly included when writing. The pen-up/pen-down moves
naturally delimit the strokes for print writing or segment
the word boundaries for cursive writing. For air-writing, the
motion is tracked with a continuous stream of sensor data,
which means the writing is uni-stroke with no engagement
information. In such a case, delimitation can be accomplished
with explicit segmentation (push-to-write) or automatic detec-
tion (spotting). Explicit segmentation can be achieved with
buttons, where the user holds a button to write and releases
it to stop [1], [14]. When buttons are not available as in
a controller-free system, one alternative is to use a specific
posture or gesture to signal the endpoints of a handwriting,
e.g., pinch-to-write. There are other approaches for explicit
segmentation. Kristensson et al. [15] proposed an input zone
for gesture delimitation with Kinect. In [10], a user reaches out
to write in the air, and the segmentation is done by thresholding
the depth information.

In sum, the approaches that require preambles in any forms
to signal engagement are still considered as explicit segmenta-
tion. On the other hand, automatic detection of handwriting
requires no intentional delimitation and can make the air-
writing experience more convenient with controller-free sys-

tems. Amma et al. [12] proposed a spotting algorithm for
air-writing based on the acceleration and angular speed from
inertial sensors attached to a glove and reported a recall of
99% and a low precision of 25% for air-writing spotting.
Nonetheless, the recognition performance was evaluated on
manually segmented writing instead of the automatically de-
tected segments.

III. AIR-WRITING AND DATA RECORDING

Air-writing involves no physical plane to write on and
provides no haptic feedback or visualized writing trajectory.
We use the box-writing style as presented in [1], i.e., the user
writes a uni-stroke word with each letter overlaid in the same
virtual box. Compared to the ordinary left-to-right writing, the
box-writing style reduces the range of the hand motion and
produces less fatigue on the user’s part.

The current work differs from [1] on two accounts. First,
the writing is rendered with a fingertip instead of a handheld
device. Motion acquisition in this work is done by the Leap,
which provides motion data of different characteristics from
the air-writing data obtained with a hand-held controller. We
call this “controller-free air-writing”. Second, the push-to-write
paradigm is no longer applicable because there is no button for
the user to signal the beginning and ending of writing. The mo-
tion trajectory will inevitably include both legitimate writing
segments and stray parts unrelated to writing, a situation not
encountered in [1]. The legitimate writing segments must be
detected and separated from those stray ones before effective
recognition of letters or words can be reliably accomplished.

In this work, we only consider uppercase letters A to
Z with a specified stroke order for each letter as in [1].
The ultimate goal of air-writing recognition should include
lowercase letters, allographs, and different stroke orders. In
short, these variations all result in different spatio-temporal
patterns and need extra recordings to be modeled separately.
Hence, we start solving the air-fingerwriting problem in a
simplified form without loss of generality.

A. Hand and Finger Tracking with the Leap
For controller-free and glove-free hand tracking, we use the

Leap, which advertises a tracking precision of 0.01 mm. With
our system setup (Intel core i7 CPU 2.66 GHz, Leap SDK
0.7.4 with USB 2.0 connection), Leap can track at a rate of
120 Hz. We place the Leap roughly 20 cm in front of the
monitor so that the tracking volume covers the range of the
hand movements with the elbow resting on the desktop. The
tracking coordinates of the Leap (see Figure 2) are aligned to
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the monitor with x- and y-axes lying in the horizontal plane
parallel to the screen. The positive x-axis points rightward, the
positive y-axis points upward, and the positive z-axis points
away from the screen. The origin is at the center of the Leap
device. The Leap emits infrared light and tracks the fingers (or
stick-like objects) with two infrared cameras. We do not place
any infrared light sources in the field of view of the Leap to
achieve its best tracking performance.

The Leap SDK produces samples of position, velocity, and
pointing direction of the “pointables”, i.e., stick-like objects,
within its view. We use the relatively stable tracking results,
i.e., the position and the velocity of the tip of a pointable.
Because the Leap can only identify the fingers by the tracking
history, we assign the finger closest to the screen as the
pointing finger when loss of tracking occurs. Most of the time
the tracking of the pointing finger is stable. The position of the
pointing finger on the xy-plane is offset and linearly scaled
to the pixel position of the cursor on screen, e.g., a finger
movement of 32 cm corresponds to a movement of 1920 pixel
on screen. To complete the basic functionalities of a 2D user
interface, we implement clicking with a gesture of closing the
thumb while the index finger points at the target. With our
design, the user can use the fingers to do simple point-and-
click task similar to using a mouse.

B. Data Recording

First, we create a 1k-word vocabulary, which includes the
most frequent 1000 two-, three-, and four-letter words and
four-letter prefixes from the Google Web 1T data set [16].
Among the 1000 words, we carefully select 100 words as the
common set, which covers 26 letters and 21 ligature types de-
fined in [1]. The remaining 900 words are shuffled and divided
into 18 sets of 50 unique words. The special distribution of
vocabulary helps us to evaluate how user dependency and out-
of-vocabulary words affect the recognition with limited user
data as described in Section V-B.

For data recording, we built a user interface that overrides
the mouse cursor control with index-finger motion for pointing
and pinch gesture for clicking. This interface updates the
tracking results from the Leap at 60 Hz, which shows no
discernible delay in both writing and pointing-and-clicking
operations. In such a framework, ordinary control motions
(of the index finger) are usually: 1) idle or slow swaying
motion, 2) reach out to a target for clicking. Non-writing
motions are not meant to be any arbitrary motions that are
unlikely to show up in this kind of UI. We would like to

Fig. 3. A screenshot of the recording program

distinguish between non-writing “control” motions and air-
writing motions. Therefore, our design of data recording is
to mix non-writing control motions with air-writing.

The recording program displays the word to write in a text
box and has several buttons: START and FINISH in the center,
and eight buttons, numbered from one to eight, around the
center in a 3-by-3 grid. A screenshot of the recording program
is shown in Figure 3. The recording procedure is as follows:

1) Click START to start recording.
2) Click one numbered button, which is randomly enabled

after clicking START.
3) Write the prompted word while pressing the Ctrl key.
4) Click one numbered button, which is randomly enabled

after writing (release Ctrl key).
5) Click FINISH to stop recording.
Clicking the randomly enabled buttons in Steps 2 and 4

introduces random cursor movements in each recording. Each
recording contains exactly a motion word with random motions
before and after the writing, and the subject needs to repeat if
the procedure is not followed. In a continuous stream of motion
data, the air-writing motion is accompanied by non-writing
random motions. A writing segment is the part of the motion
data stream when the writing activity occurs. Pressing the
Ctrl key (with the non-writing hand) labels the ground truth
of writing segments. Note that the “ground truth” itself may
still contain imprecise segmentation due to the key operation.
Thus, stray trajectories remain in the data to allow the study
of writing activity detection.

In addition to the recording procedure, we ask each subject
to write in a consistent way with the box-writing style and
the specific stroke order for each letter. The writing position,
scale, and speed are not constrained.

We recruited 18 participants (all right-handed, 13 male and
5 female) to record air-fingerwriting data. Each subject wrote
150 words, which consists of the common set and one unique
set. With 18 subjects, we collected a total of 2700 recordings
that cover the 1k-word vocabulary. This dataset is published
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Fig. 4. The recording TITL by subject C1. The trajectories inside the box
(from 2.6 to 7.2 sec) are the “ground-truth” writing segment.
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online with the complete vocabulary and video demo of air-
fingerwriting1.

As an example, we plot the position and velocity in the xy-
plane over time of the recording TITL by subject C1 with the
ground-truth label in Figure 4. We also show a 2D trajectory of
a complete recording of the same recording in Figure 5a and
the ground-truth writing segment in Figure 5b. Both position
and velocity are smoothed with a 5-point moving average, and
we offset the position in y-axis to zero mean in Figure 4a for
illustration purposes. In Figure 4, the signals of the writing
part are different from those of the non-writing part with more
frequent change with time, which sheds some light on solving
the detection problem.

IV. AIR-WRITING DETECTION

As shown in Figure 1, it is essential to know where the
writing segment starts and ends in the stream of motion data

1The air-fingerwriting data is available at http://www.ece.gatech.edu/6DMG

before recognition. We propose an approach for air-writing de-
tection that automatically extracts the writing segment (if any)
without any explicit delimiters. Ideally, the detection algorithm
should spot all writing segments (high recall), produce only a
small amount of false alarms (high precision), and impose a
minimal delay in the processing pipeline.

Our first attempt to solve the detection problem is based on
a quick distance-based classification of air-writing letters. The
segmented writing curves of each character is converted to its
own Legendre series representation [17] to form a template.
Given a windowed writing curve, we can compute its Legendre
series representation and apply distance-based nearest neighbor
classification [18]. For the detection task, we slide multiple
windows of different lengths through the motion data and
compute the corresponding Legendre coefficients. If there is
a good match, we then spot a writing character. Classifica-
tion based on the Legendre coefficients works quite well if
the sliding window matches the correct letter segmentation.
However, the Legendre coefficients are sensitive to the span
of the sliding window even with an offset of five samples
(1/12 seconds) in our case. The classification is not robust
in most cases where the sliding window does not correctly
segment a letter. Therefore, letter boundary detection based
on Legendre coefficients does not work for air-fingerwriting.
Human visual cognitive capabilities are better. People can
extract and recognize a meaningful pattern embedded in a
scribble. This inherently scale-invariant and rotation-invariant
capability is extremely difficult for a machine to duplicate for
cognitive tasks.

A. Window-based Approach and Algorithm
The approach of quick letter classification as discussed fails

to generate robust results for air-fingerwriting detection. Thus,
it is necessary to reformulate the problem as follows. We take
a sliding window approach and detect if there is a writing
activity within the observation window. The detector is only
responsible for the detection of whether a writing event occurs
in the window, which is slided through the continuous motion
data. After proper determination of the successive writing
events, we combine the detection results of all overlapping
windows and pass them to the recognizer.

This reformulated approach is based on the observation
that a motion trajectory of writing typically contains signs
of contriving effort, in contrast to those relaxing or relenting
movements. In particular, a writing event usually involves
sharp turns, frequent changes in directions, and complicated
shapes rather than a drift or stray motion. The sliding window
has to be long enough to capture these writing characteristics to
distinguish a writing event. However, a longer window means
lower temporal resolution and introduces larger delay in the
processing pipeline. In this work, we empirically choose a
window length of 60 samples (1 sec) with a step size of
10 samples (167 ms). Before the window-based detection, we
have to smooth the motion data from the Leap with a 5-point
moving average to remove jitters. In Figure 6, we show the
2D trajectories of several sliding windows. The windows in
Figure 6c and 6d contain writing events, and the windows in
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Fig. 6. The 2D trajectory of selected sliding windows from TITL by subject
C1, where is denotes the first sample index of the window, wc denotes the
count of samples that are labeled as ground-truth writing, and ll denotes the
log likelihood of the writing event classification.

Figure 6a and 6f do not. The windows in Figure 6b and 6e
are ambiguous with partial writing and non-writing events.

B. Writing Event Detection
It is straightforward to determine a window that contains

a tiny motion as a non-writing event. We define an “idling”
window as a) both bx and by , the edges of the bounding box
of px and py , are smaller than 10 mm; and b) the velocity is
smaller than 50 mm/s.

After suppression of “idling movements”, we extract fea-
tures from a non-idling window, which can be derived as
follows:

f1 =
∑
|∆θi| (1)

f2 =
∑
|∆θi|2 (2)

f3 = bx/(bx + by) (3)
f4 = ||total travel distance/max(bx, by)||1 (4)
f5 = ||total travel distance/max(bx, by)||2 (5)
f6 = s2/s1 (6)
f7 = # of zero crossings of vx and vy, (7)

where ∆θi is the change in direction of px and py with a
minimum step size of 5 mm; bx and by are the edges of the
bounding box of px and py; s1 and s2 are the eigen values (in
descending order) of the point clouds of (px, py).

The angle features f1 and f2 capture the properties of
sharp and frequent turns of information-bearing writing. If
the window contains a writing event, f3 is likely to be close
to 0.5 (because the bounding box is closer to a square), and
the normalized travel distances f4 and f5 become substantial
(because the back-and-forth motion involved in writing). The
ratio of eigenvalues (f6) is an indicator of the shape complexity
and tends to be close to one when the window contains a
writing event. When computing the number of zero crossings
of vx and vy (f7), a threshold of ±100 mm/s is used to avoid
change in direction due to tremor or tracking noise.

Given the writing segment labeled by the subject, the
ground-truth label for a window is determined as follows:
a) writing: the ground-truth writing segment spans more than

5/6 of the window
b) non-writing: the ground-truth writing segment spans less

than 1/6 of the window

c) mix: otherwise
For example, Figure 6a and 6f are labeled as non-writing,
Figure 6c and 6d are writing, and Figure 6b and 6e are mix.
It is more ambiguous to judge a mix window as a writing or
a non-writing event.

A Gaussian mixture model (GMM) classifier is used for the
binary classification of writing and non-writing events. To train
and tune the classifier, only writing and non-writing windows
are considered. We slide the window from the beginning of
each recording and obtain around 7k writing windows and 5k
non-writing ones. We use all of these windows to train and test
the classifier because the preliminary results of k-fold cross
validation do not show much difference.

We examine the feature distributions for writing and non-
writing and choose a single Gaussian mixture per model. The
distributions of some features are heavily skewed, e.g., f2 and
f6 of non-writing windows. To create better models for writing
and non-writing, we modify the features as follows:

f̂i = log(fi + ε), where i = 1..6, ε = 10−8 (8)

f̂7 = log(f7 + 1). (9)

The GMM classifier provides a soft binary decision with
likelihood:

C = L(f |G1)− L(f |G0)− d, (10)

where L(·) is the log likelihood, f is the feature vector of a
window, G1 is the GMM of writing, G0 is the GMM of non-
writing, and d is the threshold to adjust the operating point.
A window is classified as writing if C ≥ 0 and non-writing if
C < 0.

We experiment with different feature vectors f for GMMs
and evaluate their receiver operating characteristic (ROC)
curves. The ROC curves of individual features show that f2
and f3 are less effective in distinguishing writing and non-
writing. Then, we experiment with four sets of feature vectors:
1) f1,4−7, 2) f̂1,4−7, 3) f1−7, and 4) f̂1−7. For GMMs, we
also experiment with different types of covariance matrices
of the feature vector: diagonal, full, and sparse covariance
matrix. A diagonal covariance matrix means that we treat each
feature in a feature vector independently. In contrast, a full
covariance matrix means full dependency between features. In
a sparse covariance matrix, we only correlates features that are
intuitively dependent, i.e., the angle-based features (f1 and f2),
and the distance-based features (f4 and f5), and set other cross
covariances to zero. In Figure 7, we plot the ROC curves of
the best two feature sets of each covariance matrix type. With
a false alarm rate of 5.1%, f̂1−7 with a full covariance matrix
has the highest true positive rate of 96.4% with d = −1.4,
which is selected as the operating point of the classifier. We
also show the corresponding confusion matrix at the operating
point in Table I.

A more complicated motion results in a higher score, e.g.,
C = 10.98 for Figure 6c, and a simpler motion results in a
lower score, e.g., C = −4.29 for Figure 6f. The windows in
Figure 6a and 6f are correctly classified as non-writing. The
windows in Figure 6c and 6d are also correctly classified as
writing. The mix window tends to have a score close to 0. For
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TABLE I. THE CONFUSION MATRIX OF WINDOW-BASED WRITING
EVENT DETECTION

classification:
writing non-writing

case: writing 68324 2562
case: non-writing 2608 48136

example, Figure 6b is classified as non-writing (C = −1.38),
and Figure 6e is classified as writing (C = 0.35). Therefore,
some ambiguity is expected around the boundary of a writing
segment.

C. From Windows of Writing Events to Writing Segments
After window-based writing event detection, we need to

convert windows of writing events to writing segments. With
our setting on the window length and step size, every sub-
window of 10 samples is covered by six windows. A sub-
window is determined as writing if two or more of the six
windows are writing, and we combine consecutive writing sub-
windows into a writing segment. Figure 5c is an example of
the detected writing segment, which contains some distortion
around the word boundary.

Compared to typical conversion schemes, e.g., majority vote
or sequential testing, our conversion scheme is more greedy in
the detection of air-writing because the writing parts missed in
the detection stage can never be recovered in the recognition
stage. Hence, the recognizer has to handle the imprecise
segmentation or false alarms from the detector.

To evaluate the writing detection performance, we categorize
the detected writing segments into four types:
a) discard: the segment has a length less than or equal to 60

samples
b) false alarm: no overlap with the ground-truth segment
c) imprecise: less than 80% overlap with the ground-truth

segment, or the offset of start/end point is greater than 50
samples

d) precise: greater than 80% overlap with the ground-truth
segment, and the offset of start/end point is less than 50

samples

Segments of the discard category will not be passed on to the
latter recognizer. With the detector setting in Section IV-B,
we have 2295 precise, 478 imprecise, 68 false alarm, and 164
discard detected writing segments out of 2700 recordings. In
terms of writing event detection, all the writing activities are
detected except the word II, i.e., 1 of 2700. The limitation of
the proposed detection method is that letter I by itself cannot
be spotted due to its simple swiping down motion.

Some subjects pause between letters when writing. If the
pause is too long, it may result in separate detected writing
segments (sub-word) of a word recording, e.g., HARD by
subject M3 is detected as three imprecise writing segments
H, AR, and D. For these sub-word detections, we manually
examine the writing segments and assign the correct labels of
letters.

As introduced in [1], the letter-based word recognition
can handle arbitrary letter sequences, i.e., words and sub-
words make no difference. On the other hand, the word-
based word recognition can only recognize a complete word
that is specified in the vocabulary. Since it is impractical to
include all possible sub-words in the vocabulary for word-
based recognition, we merge detected segments that are no
more than 60 samples apart and include the motion in-between
as the ligature between sub-words. The merged detection
results have 2225 precise, 483 imprecise, 30 false alarm, and
54 discard writing segments. After merging, there are still
18 imprecise segments containing partial words, which are
excluded in the evaluation of word-based recognition. Note
that the merge operation may connect nearby false detections
and distorts the boundary of a writing segment, which explains
the decrease of precise, false alarm, and discard segments.

V. CONTROLLER-FREE AIR-WRITING RECOGNITION

A. The Recognizer

HMMs are suitable for modeling spatial-temporal signals
and commonly used for online handwriting recognition. Writ-
ing in the air creates uni-stroke patterns that deviate from con-
ventional writing patterns. In [1], we have shown how to model
air-writing with the elements of letter and ligature models.
Herein, there are two major differences for air-fingerwriting
recognition: a) the Leap only tracks the position and velocity;
and b) explicit segmentation of the writing signal is not
available as discussed in the previous section. The HMM-based
recognizer of [1] for air-writing has to be modified to handle
these differences.

We use the 2D position and velocity on the xy-plane as
the feature (observation) vector for the HMMs. Let P o =
[px(i), py(i)]> denote the position, and V o = [vx(i), vy(i)]>

denotes the velocity, where i = 1, 2, ...N , and N is the number
of samples in a writing segment. The normalization process
is required to make the recognizer scale and speed invariant.
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Normalization of P o and V o is accomplished as follows:

P =
(P o − P o)

σy
, σy is the standard deviation of py (11)

V =
V o

max ||V o(i)||
, i = 1, 2, ...N. (12)

In Equation 11, we make P unit variance in the y-axis because
the “height” of letters is a more reliable measurement of the
virtual writing box than the “width”. For example, letter I or
J are thinner than A or B but of similar height. The bounding
box of P cannot be used as the virtual writing box due to
possible distortion introduced by non-writing motions.

The normalization can not be performed properly without
roughly knowing the center and scale of the writing motion.
Imagine the window of data contains a random motion in
a range of 40 cm × 40 cm followed by air-writing with a
bounding box size of 5 cm. In such a case, it is difficult to
offset and adjust the scale of the motion signal to fit our
models without knowing where the writing is beforehand. In
our approach, the coarse scale of the writing motion can be
determined from the detection result.

Another main difference from the push-to-write scheme is
the non-writing motion incurred in the detection stage. For
automatic speech recognition, the filler (or garbage) model is
commonly used to absorb non-speech artifacts and handle out-
of-vocabulary words for keyword spotting [19]. In our case,
we use the filler model to handle the non-writing motion. The
filler HMM is a single state model with self-transition and
one Gaussian mixture per state. For the character and ligature
models, the chosen HMM topology is identical to [1]. We
train the models (with the normalized new features P̂ and V̂
on previous air-writing data) as the initial values of character
and ligature HMMs. The filler model is initialized with zero
mean and global variance of all precise writing segments.

With the initial character and ligature HMMs, we synthesize
the HMM for each word in our vocabulary and append the
filler model in the front and back. The leave-one-out cross
validation on subjects results in 18 training sets. We perform
embedded Baum-Welch re-estimation on all precise recordings
in each training set. After training, forced alignment is done
on the training data. When the end point of a detected segment
is fairly close to the ground truth, the filler model is forced
to pass through with occupancy of only one sample. When
the detected segment is corrupted, the filler absorbs the non-
writing motions as expected.

We use the trained HMMs of characters, ligatures, and
the filler to build the word-based and letter-based decoding
word network as shown in Figure 8. The word networks in
Figure 8 are identical to the ones in [1] except the addition
of the filler model and the skip arc. The filler models in the
front and back are intended to absorb the possible non-writing
motions at the begin and end of a detected word segment. The
skip arc between the fillers allows the decoding path of no
writing at all, which is meant to reject false alarms. We use
the Hidden Markov Model Toolkit for fingerwriting modeling
and recognition. For details of word-based and letter-based
recognition and implementation of the recognizer, see [1].

word N

word 2

fil filA lig_AB B lig_BC C

(a) Word-based

A

lig_AA

lig_AB

lig_BB

B

lig_BA

p(B|B)

p(A|B)

p(B|A)

p(A|A)

fil fil

(b) Letter-based (simplified)

Fig. 8. Decoding word networks

B. Recognition of Detected Writing Segments
It is important to understand how air-writing recognition is

affected by the detection subsystem. We evaluate the recog-
nition performance with all detected word segments except
the discard ones. In our recording, each subject writes 100
common words and 50 unique ones. For each testing set of
leave-one-out cross validation, we separate the common and
unique words into two sets. The 50 unique words do not appear
in the vocabulary of the training set. The unique testing set
represents the most challenging case, which is equivalent to a
new user writing unseen words in the training data.

The 1k-word vocabulary is used for the word-based de-
coding network as shown in Figure 8a. We estimate the
bigram language model from the 1k-vocabulary and embed
the conditional probabilities in the letter-based decoding net-
work as shown in Figure 8b. The word-based recognition is
evaluated with the merged detection results, and we show
the average segment error rate (SER) in Table II. The letter-
based recognition is evaluated with the detected segments, and
we show the average SER and character error rate (CER) in
Table III. The SER and CER are calculated as follows:

SER =
E

Ns
(13)

CER =
S + I +D

Nc
, (14)

where E is the total segment errors, Ns is the total number of
segments, S, I and D are the counts of substitution, insertion
and deletion errors at the character level, and Nc is the total
number of characters. For example, if a detected segment ABC
is recognized as ABO, we have one segment error out of one
segment and one substitution error out of three characters.
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TABLE II. AVERAGE SEGMENT ERROR RATE (SER) OF WORD-BASED
RECOGNITION ON THE MERGED DETECTION RESULTS

segment # SER (%)
precise (common) 1481 0.34
precise (unique) 744 0.54
imprecise (common) 313 2.56
imprecise (unique) 152 5.26
false alarm 30 20.00
overall - 1.15
ground truth - 0.15

TABLE III. AVERAGE SEGMENT ERROR RATE (SER) AND CHARACTER
ERROR RATE (CER) OF LETTER-BASED RECOGNITION ON THE DETECTION

RESULTS

segment # SER (%) CER (%)
precise (common) 1530 5.16 1.52
precise (unique) 765 6.14 1.83
imprecise (common) 325 23.69 8.21
imprecise (unique) 153 24.84 8.43
false alarm 68 47.06 -
overall - 9.84 -
ground truth - 4.59 -

Here, we reserve the definition of “word” as the complete
word we prompt the user to write, i.e., the “word” defined in
the vocabulary. SER for word-based recognition in Table II
has the same meaning as the convention definition of WER,
but SER for letter-based recognition in Table III does not. We
keep the error metric unified as SER in this work.

We also show the number of segments for each detection
case in Tables II and III. The precise segments are both around
82.7% of the total segments with and without merging. When
computing the overall SER with Equation 13, non-rejected
false alarms are counted in E, but we do not include the
number of false alarm in Ns.

For word-based recognition as shown in Table II, the SER
of the unique set is roughly two times larger than that of
the common set, and 80% of the false alarm segments are
rejected (20% SER). For letter-based recognition in Table III,
the SER difference between the common and unique sets is
relatively small, but the false alarm rejection rate drops to
52.94%. The scalability of vocabulary may be an issue for
word-based recognition, but should be less a concern for letter-
based recognition.

The segmentation quality from the detection result is another
factor that affects the recognition performance. For word-
based recognition, the weighted average SERs of precise and
imprecise segments are 1.40% and 3.44%, respectively. For
letter-based recognition, the weighted average precise and
imprecise SERs are 5.49% and 24.90%. To have a better
comparison, we also list the SER of recognition of the ground-
truth writing segments, 0.15% for word-based recognition in
Table II and 4.59% for letter-based recognition in Table III.
The SER of the precise segments (with less than 50 samples of
end point offset and greater than 80% overlap) is slightly worse
than the SER of the ground-truth segments, but the imprecise
segments result in much higher error rates.

We can see that the quality of writing segmentation directly
affects the recognition results, and the overall performance
depends on both the detector and the recognizer. Imprecise
segmentation can lead to insertion of non-writing motions or

deletion of the writing part. It becomes problematic when
the detected word boundary is not accurate. For letter-based
recognition, the non-writing part of a detected segment may
be falsely recognized as a letter while the remaining part
is correct. The non-writing part is less of a concern for
word-based recognition due to the strong constraint on the
vocabulary. For the deletion case, the letter-based recognizer
may wrongly decode a partial letter as a filler (non-writing) or
other letters. If the deleted part is small, it is possible for the
word-based recognizer to recognize correctly based on other
letters in the segment.

The overall SER of word-based recognition is 1.15%, and
the overall SER of letter-based recognition is 9.84%. If user-
assisted correction is allowed, providing the n-best recognition
results for the user to select the right one is a good strategy
to further reduce the error rates. For example, the overall
SER of letter-based recognition is reduced to 5.19% for 2-best
recognition and 2.52% for 5-best recognition.

VI. CONCLUSION

In this work, we attempt to detect and recognize controller-
free air-writing rendered with the fingertip, which can be used
as an alternative for text input on motion-based interfaces,
especially when a keyboard is not available.

“Air-fingerwriting” is similar to writing on a touch-based
interface, but the major difference is the lack of touch (pen-
up and pen-down) information. Thus, we need to detect the
writing activity and the corresponding writing segment before
performing recognition. Instead of the push-to-write scheme
that requires delimiters for explicit writing segmentation,
we propose an approach that automatically detects writing
events and segments the writing part for recognition. The
proposed window-based detector classifies whether a writing
event occurs in the sliding window, and the consecutive
writing windows are processed to form a writing segment.
The detected segments are passed to the recognizer for the
final result of recognition or rejection. The proposed strategy
is found to be effective in extracting writing trajectories from
a continuous stream of motion data mixed with stray and
spurious movements.

The Leap from Leap Motion is used for glove-free and
marker-free finger movement tracking, which provides the
3D position and velocity of the finger motion trajectory. We
recruited 18 subjects to record a total of 2700 words of a
1k-word vocabulary. Each recording consists of two random
“cursor” movements before and after the writing part. With
the controller-free air-writing data set acquired through the
Leap, we first train a window-based GMM detector that
works at an operating point of 5.1% false alarm rate and
96.4% true positive rate of writing windows. Regardless of
the segmentation precision, the detector commits a very low
false negative rate: only misses one out of 2700 words.

We further evaluate the recognition performance of the
detected segments and compare with the recognition of the
ground-truth segments. The writing segmentation quality from
the detection stage has a great influence on the recognition
performance. The overall SERs of word-based and letter-based
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recognition are 1.15% and 9.84%, respectively. In future work,
we would like to further improve the recognition performance
by exploiting other features, such as angle-based features,
applying trigram language models, or re-scoring for n-best
results.
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