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a b s t r a c t 

With the passing of history, precious cultural heritage was left behind to tell ancient stories, especially 

those in the form of written documents. In this paper, a weakly supervised segmentation system with 

recognition-guided information on attention area, is proposed for high-precision historical document 

segmentation under strict intersection-over-union (IoU) requirements. We formulate the character seg- 

mentation problem from Bayesian decision theory perspective and propose boundary box segmentation 

(BBS), recognition-guided BBS (Rg-BBS), and recognition-guided attention BBS (Rg-ABBS), progressively, 

to search for the segmentation path. Furthermore, a novel judgment gate mechanism is proposed to 

train a high-performance character recognizer in an incremental weakly supervised learning manner. The 

proposed Rg-ABBS method is shown to substantially reduce time consumption while maintaining suffi- 

ciently high precision of the segmentation result by incorporating both character recognition knowledge 

and line-level annotation. Experiments show that the proposed Rg-ABBS system significantly outperforms 

traditional segmentation methods as well as deep-learning-based instance segmentation and detection 

methods under strict IoU requirements. 

© 2019 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license. 
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. Introduction 

In the course of thousands of years of history, our predeces-

ors left behind a large number of historical documents that con-

ain valuable information on historical knowledge and literary arts.

owever, after years of storage, historical document collections en-

ounter serious degradation [1] via staining, tearing, ink seepage,

tc. The problem of how to preserve this priceless culture her-

tage for the next generation has received intense interest from

umerous researchers [2–4] . Historical document digitization can

rotect printed paper documents from the effect of direct ma-

ipulation for consulting, exchanging and remote access purposes.

ypically, historical documents are digitized through photograph-

ng, followed by document segmentation, recognition, preservation,
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anagement, and research. Among all the above-mentioned stages,

ocument segmentation is conducted as a first step and the over-

ll digitization performance of the system heavily depends on the

egmentation quality. Therefore, for historical document analysis,

ighly precise bounding boxes, i.e., with high intersection-over-

nion (IoU) values, for the characters, are required to facilitate the

xecution of subsequent research. In general, document segmenta-

ion consists of three principal stages: document layout analysis,

ext line segmentation and character segmentation, as illustrated

n Fig. 1 . 

Document layout analysis, i.e., page segmentation, the prereq-

isite step for document image analysis and understanding, is to

eparate a document image into regions of interest [5] . Traditional

ocument layout analysis methods mainly rely on hand-crafted

eatures [6,7] , prior knowledge [7,8] , or their hybrid information

9,10] . Although these methods are efficient and useful for some

pecific document styles, most of them cannot easily be gener-

lized to other layout situations. Recently, deep-learning-based

ethods have demonstrated excellent capability in semantic

egmentation [11] . Pixel-wise segmentation with fully convolu-

ional networks [5,12,13] or hybrid convolutional multidimensional 
under the CC BY-NC-ND license. 
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Fig. 1. A high level flow diagram depicting document segmentation. The stages in 

the red boxes are the main focus of this study. 
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long short-term memory (MD-LSTM) networks [14] have been

introduced in document layout analysis, significantly improving

segmentation performance. 

Text line segmentation is the division of document images or

paragraph images into individual text line images for subsequent

character segmentation or text line recognition. However, a text

line is hard to define, especially for historical handwritten docu-

ments. Previous researchers provided three types of approaches,

namely baseline [15] , bounding box [16] , and X-Height [17] meth-

ods. A survey of existing methods developed during the last

decades for text line segmentation of historical documents has

been presented in [18] . Recently, a new scheme [19] for historical

manuscripts, consisting of minimum filtering, average block pro-

jecting, segmentation path selection and nonlinear segmentation

path construction, was proposed for binarization-free text line

segmentation. However, previous methods usually rely on heuris-

tic knowledge and handcraft features, making them less widely

applicable and scalable. By contrast, deep-learning-based methods

show much more robust and effective performance on complex

and noisy page images. Renton et al. [20] proposed a dilated

convolutions-based variant of deep fully convolutional network

(FCN) for handwritten text line segmentation. Without manual

parameter tuning or heuristics, Breuel and Robust [14] combined

convolutional and MDLSTM networks to achieve fast yet reliable

text line segmentation. 

Character segmentation is an operation that seeks to decom-

pose text images into subimages of individual symbols [21] . The

precision of character segmentation has significant influence on

the subsequent processes, such as historical document preserva-

tion, backtracking, research and discovery. After precise character

segmentation, people can easily backtrack the image samples from

different dynasties for a specific character. In this way, histori-

ans can easily study the historical evolution of a specific charac-

ter by analyzing character difference in structure. Furthermore, cal-

ligrapher, or even ordinary people, can take inspiration from the

character font structure, thanks to the convenient access to the

historical character image. However, except in the cases of boxed

or clearly spaced characters, segmenting characters independently

from the recognition process yields poor recognition performance

[22] . Therefore, character recognizer is usually incorporated in the

character segmentation step to ensure high-precision segmenta-

tion results [22,23] . Note, however, that character recognition and

character segmentation rely on each other, and a circular depen-

dency is created between them, referred to as Sayre’s paradox [24] .

Sayre’s paradox yields a problem for our consideration: 

When we are interested in a new kind of historical document with

only text line images and its text-level annotation available, how can

we train a character recognizer from scratch? 

Previous methods [22,23,25,26] simply neglect this problem

and directly use an existing character dataset for training, which

can barely be satisfied in practice. However, character segmenta-

tion for text line images is generally unsatisfactory without the
id of recognition knowledge. If line-level annotations are di-

ectly assigned to such segments, the resulting character dataset

ould have a large proportion of erroneous samples, including

is-segmentation and mis-labeled characters. Therefore, how to

ffectively train a character recognizer with inaccurately labeled

haracter samples is a problem worthy of study. 

In this paper, we propose a weakly supervised precise seg-

entation system for historical document images, as detailed in

ig. 2 . The proposed system mainly consists of four stages, includ-

ng preprocessing, boundary box segmentation (BBS), incremen-

al weakly supervised learning and recognition-guided attention

oundary box segmentation (Rg-ABBS), with the following distinc-

ive contributions: 

• The character segmentation problem is formulated from the

perspective of Bayesian decision theory. Through maximizing

the posterior probability of class sequence given text line im-

age, we derive three new algorithms to search for the segmen-

tation path, i.e., BBS, Rg-BBS, and Rg-ABBS, progressively. 

• We proposed a judgment gate (JG) mechanism that enables in-

cremental weakly supervised learning on character recognition

network (character recognizer) that can provide reliable charac-

ter recognition score to improve character segmentation results.

• The proposed Rg-ABBS significantly reduces time consumption

by performing recognition-guided segmentation only on ‘atten-

tion’ area and achieves comparable performance in comparison

to performing recognition-guided segmentation on the whole

text line image, i.e., Rg-BBS. 

• The system is comprehensive, including line and character seg-

mentation for historical images, that provides sufficiently pre-

cise bounding boxes for characters, even under high IoU re-

quirements. 

The reminder of this paper is organized as follows. Section 2 re-

iews the related works. Section 3 formally defines the problem of

istorical document segmentation. Section 4 details the proposed

egmentation methods: BBS, Rg-BBS, and Rg-ABBS, progressively,

nd presents a novel weakly supervised learning method for char-

cter recognizer. Section 5 presents the experimental results. Fi-

ally, Section 6 concludes the paper. 

. Related work 

In this section, we describe work in the literature related

o three aspects of our own, specifically, segmentation meth-

ds, approximate string matching approaches, and weakly super-

ised learning strategy. For segmentation, we review works on

rojection-based [19,27–29] , grouping [30,31] , recognition-based

22,23,32] and deep-learning-based [33–37] methods. 

For projection-based segmentation methods, projection profiles

re obtained by accumulating pixel values along a particular axis.

ariants for obtaining a profile curve include connected compo-

ents and projecting black/white transitions [27] , rather than pix-

ls. Furthermore, a smoothed profile curve via Gaussian or median

ltering was also applied to eliminate local maxima [28] . Consid-

ring the efficiency of projection-based methods, we apply vertical

rojection to slice the document image into text line images for

ext line segmentation. 

Grouping methods build alignments by aggregating units using

 bottom-up strategy, where the units may be pixels or higher-

evel units, such as units from boundary detection [38] or con-

ected components [31] . For handwritten pages and historical doc-

ments, Likforman-Sulem and Faure [30] proposed an iterative

ethod based on perceptual grouping for forming alignments. In

31] , Le et al. proposed connected-component-based segmenta-

ion (CCS) by introducing a classifier to further evaluate whether

he connected component is text or not. In our implementation,
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Fig. 2. Overview of the proposed architecture. The input document image X is accompanied with label Z that is organized line by line Z = ( z 1 , z 2 , . . . , z C ) , as shown in (a). 

During the preprocessing stage, document image X is first split into text line images X = ( x 1 , x 2 , . . . , x C ) and each text line image x c is assigned its corresponding label z c . 

Then the text line image will be further decomposed into segments B = (b 1 , b 2 , . . . , b N ) , as shown by the white bounding box in (b). After that, boundary box segmentation 

(BBS) is applied for coarse character segmentation, then a weakly labeled data pool (see Fig. 7 (a)) is created for character recognizer that is trained in an incremental weakly 

supervised learning manner. Finally, the character recognizer is incorporated with line-level annotation during recognition-guided attention boundary box segmentation 

(Rg-ABBS) to rectify the mis-segmented characters (compare (c) with (d)) and output the final segmentation results. 
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Fig. 3. Illustration of overlap area between the ground truth and predicted bound- 

ing box with respect to IoU ranging from 0.5 to 0.85. 
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oundary detection [38] is adopted to over-segment the line im-

ges into strokes or radicals, because this algorithm is classic and

asy to reproduce. 

For character segmentation, recognition-based methods 

22,23,32] usually provide more precise segmentation results. 

n [22] , Schenkel et al. reported the segmentation performance of

n-line hand-printed capital Latin character, with a neural net-

ork recognition engine and a graph-algorithmic post-processor.

nother method proposed by Daifallah et al. [23] is based on

rbitrary segmentation, followed by segmentation enhancement,

onsecutive joints connection and finally segmentation point locat-

ng. However, these methods did not formulate recognition-guided

egmentation problems as an objective function; thus, they cannot

asily provide systematic analysis of the problem. In our paper,

e formulate recognition-guided segmentation problem from

ayesian decision theory perspective, and provide different types

f algorithm to search for the segmentation paths, from coarse to

ner. 

For deep-learning-based segmentation methods, we investigate

nstance segmentation methods [11,33,34] and object-detection-

ased methods that can be divided into region proposal methods

39–41] and regression-based methods [35–37,42,43] . These meth-

ds leverage the outstanding capability of deep learning networks

or feature representation, but are heavily dependent on large la-

eled training datasets, which is barely satisfied for historical im-

ge segmentation. 

Approximate string matching [44] , in its most general form, is

n algorithm finding strings that match a pattern approximately,

llowing a limited number of ‘errors’ in the matches. Typical so-

utions include edit distance [45] , Hamming distance [46] , block

istance [47] methods. In our problem, we compare our charac-

er prediction on segments with text-line annotation through edit

istance to identify the mismatched parts, namely the ‘attention’

reas. As detailed in Section 4.4 , we perform recognition-guided

egmentation only on the attention area to save time. 

Unfortunately, there is only a weakly labeled data pool (see

igs. 2 and 7 (a)) to train the character recognizer, in which the

upervision information is not always ground-truth, i.e., some la-

el may suffer from error. This is typically called inaccurate super-

ision [48] . By assuming that labels are subject to random noise,

esearchers [49] have directly optimized the classifier with noise

abel. Another approach [50] is to identify and eliminate or cor-

ect mislabeled training instances for supervised learning. Typi-

ally, data editing method [51] removes or relabels a suspected in-

tance, when the proportion of examples of the same class in a

eometrical graph is not significantly large enough. However, such

echniques heavily rely on neighborhood information to make de-

ision. Therefore, they are less reliable in high-dimensional feature
pace, especially when data are sparse [48] . Partially inspired by

he above-mentioned methods, we develop an incremental weakly

upervised learning strategy based on the prediction probabilities

o identify and relabel mis-labeled data. 

. Problem definition 

Given a historical page image and its label (X , Z) , where Z =
( z 1 , z 2 , . . . , z C ) as shown in Fig. 2 (a), the problem is how to lo-

ate every character inside the image by providing each charac-

er a bounding box. Note that our label Z is page-level anno-

ation in which line-level annotations are organized line by line

( z 1 , z 2 , . . . , z C ) , where C is the line number. 

Traditional detection methods [36,37,43,52] consider an ob-

ect/text to be found when the overlap area between the bound-

ng box and the object/text, i.e., IoU, is larger than 0.5. However,

his criterion is not friendly for historical document segmenta-

ion, because character segmentation precision has a profound ef-

ect on subsequent processes, such as historical image preserva-

ion, management, research, and discovery. For example, with char-

cter segmentation results from historical documents from differ-

nt dynasties, historians can easily compare different samples for

 particular character and study its evolution by analyzing differ-

nces in structure. Specifically, in Fig. 3 , we demonstrate an exam-

le of overlap area between the ground truth and predicted bound-

ng boxes, illustrating IoU ranging from 0.5 to 0.85. It can be ob-

erved that an IoU of 0.5 is not sufficient to meet the strict require-

ents of historical image segmentation problem, because key rad-

cals may be lost and the remainder can barely be recognized. IoUs

f 0.7 and 0.75 also inadequately meet the requirement while IoUs

qual to or greater than 0.8 are approximately adequate. Therefore,

n this paper, we mainly focus on bounding box predictions with

oU values larger than 0.7, especially those equal to or larger than

.8. 

.1. Problem formulation 

The objective function of the historical document image seg-

entation problem can be formulated from Bayesian decision view
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[25] . In Fig. 2 (b), text line image x is segmented into bounding

boxes of segments B = (b 1 , b 2 , . . . , b N ) after preprocessing. Denote

y as a segmentation path indicating how to merge B into bounding

boxes of characters B 

′ = (c 1 , c 2 , . . . , c T ) , T ≤ N. The posterior prob-

ability of being recognized as the class sequence l = (l 1 , l 2 , . . . , l T )

given text line image x can be formulated as follow: 

P ( l | x ) = 

∑ 

y 

P ( l , y | x ) = 

∑ 

y 

P ( y | x ) P ( l | y , x ) , (1)

where P ( y | x ) represents the posterior probability of the y th path

given the text line image, and P ( l | y , x ) denotes the posterior prob-

ability of the class sequence l given the y th path and the text line

image. The objective function is to search for the optimal segmen-

tation path: 

y ∗ = arg max 
y , l 

P ( l | x ) = arg max 
y , l 

P ( y | x ) P ( l | y , x ) (2)

Furthermore, the posterior probability of the class sequence l can

be decomposed as: 

P ( l | y , x ) = 

T ∏ 

t=1 

p(l t | c u t ) p(l t−1 l t | c b t ) p(l t | c t ) , (3)

where c u t and c b t represent unary and binary outline geometric fea-

tures of bounding boxes, respectively (see Fig. 5 for more detail).

Since P ( y | x ) in objective function Eq. (2) follows uniform distribu-

tion in our implementation, it has no influence on the choice of y ;

thus, can be removed from the objective function. Then, substitut-

ing Eq. (3) to objective function Eq. (2) gives the general objective

function of text line image segmentation: 

y ∗ = arg max 
y , l 

T ∏ 

t=1 

p(l t | c u t ) p(l t−1 l t | c b t ) p(l t | c t ) 

= arg max 
y , l 

log 

( 

T ∏ 

t=1 

p(l t | c u t ) p(l t−1 l t | c b t ) p(l t | c t ) 
) 

. (4)

In Section 4 , we extend the general objective function Eq. (4) to

some specific cases according to practical requirements, and will

explain each item in the objective function in detail. 

4. Approach 

Towards high-precision segmentation of historical documents,

we propose a comprehensive segmentation system, as illustrated in

Fig. 2 , consisting of four parts: preprocessing stage to segment the

page image into radical components, boundary box segmentation

(BBS) to provide an approximate segmentation result, incremen-

tal weakly supervised learning to train a high-performance char-

acter recognizer, and finally recognition-guided attention boundary

box segmentation (Rg-ABBS) to provide extremely precise segmen-

tation result. 

4.1. Preprocessing 

In this stage, vertical projection is applied to slice the page im-

age X into line images X = ( x 1 , x 2 , . . . , x C ) , so that we can obtain

the line image-annotation pair ( x , z ). As shown in Fig. 4 , we first

vertically project the image page onto the x -axis to derive the pro-

jection profile, then follow the way proposed in [53] to extract line

images. Next, boundary detection [38] is adopted to over-segment

the line images into strokes or radicals, as shown in Fig. 2 (b). Note

that our main framework can be effectively integrated with other

over-segmentation methods, but we choose traditional boundary

detection method to make our approach easier to reproduce. Af-

ter boundary detection, text line image x is over-segmented into

bounding boxes B = (b , b , . . . , b ) with N indicating box number. 
1 2 N 
.2. Boundary box segmentation (BBS) 

Before incremental weakly supervised learning, character rec-

gnizer has not yet been trained; thus, the recognition confidence

core of the character recognizer, i.e., p ( l t | c t ) in Eq. (4) , is not pro-

ided. In BBS, p ( l t | c t ) is assumed to be uniform distribution, and

hat may explain why the segmentation result of BBS is relatively

oarse. Formally, the objective function of BBS can be transformed

rom the general objective function Eq. (4) by setting p(l t | c t ) = 1

s follows: 

y ∗ = arg max 
y , l 

log 

( 

T ∏ 

t=1 

p(l t | c u t ) p(l t−1 l t | c b t ) p(l t | c t ) 
) 

. 

p(l t | c t )=1 = arg max 
y , l 

log 

( 

T ∏ 

t=1 

p(l t | c u t ) p(l t−1 l t | c b t ) 

) 

= arg max 
y , l 

T ∑ 

t=1 

2 ∑ 

i =1 

λi ω ti (5)

here ω t1 = log p(l t | c u t ) estimates the unary outline geometric fea-

ures of bounding boxes (refer to A height and A width in Fig. 5 ), ω t2 =
og p(l t−1 l t | c b t ) estimates the binary outline geometric features of

ounding boxes (refer to A pad in Fig. 5 ), λi are weights to balance

he effects of these components in practical applications. 

Next, we briefly introduce how we estimate the outline geo-

etric features, i.e., ω t 1 and ω t 2 , of bounding boxes in BBS. For

xample, as illustrated in Fig. 5 , (T A x , T 
A 

y ) and (P A x , P 
A 
y ) are the co-

rdinates of the upper-left and lower-right corner of bounding box

 , respectively, while (T B x , T 
B 

y ) and (P B x , P 
B 
y ) are those of box B . The

elf-Score of bounding box A is formulated as follows: 

 ss (A ) = 4 ·
((

I { A height < H} − 1 

2 

)
+ 

(
I { A pad > P} − 1 

2 

))
here I { condition } equals to 1 when condition is true and 0 oth-

rwise, A height = P A y − T A y is the height of bounding box A , A pad =
 

B 
y − P A y is the distance between A and its next adjacent bounding

ox B ; H and P represent the maximum merging height threshold

nd minimum distance threshold, e.g., 90 and 8 pixels, respectively.

ote that we assume A pad > P for the last bounding box. Let ˆ y rep-

esent the prefix of path y with the last element removed and y e 
enote the last element of y . The Accumulative-Score of path y in

tep t is thus defined as: 

 acc ( y , t) = 

{
S acc ( ̂ y , t − 1) + S ss ( y e ) , t > 1 

S ss ( y 1 ) , t = 1 . 
(6)

In our implementation, we have S ss (c t ) = λ1 ω t1 + λ2 ω t2 ( ω ti is

he same in Eq. (5) ) and S acc ( y , T ) = 

∑ T 
t=1 S ss (c t ) , hence the objec-

ive function for BBS can be transformed as: 

 

∗ = arg max 
y , l 

T ∑ 

t=1 

2 ∑ 

i =1 

λi ω ti 

= arg max 
y , l 

T ∑ 

t=1 

S ss (c t ) 

= arg max 
y , l 

S acc ( y , T ) . (7)

herefore, the problem is to search for the optimal path y ∗ with

aximum Accumulative-Score S acc ( y 
∗, T ). Although the optimal path

an be found by dynamic programming, it would consume con-

iderable time and effort. In practice, to strike a trade-off be-

ween accuracy and efficiency, we apply beam search [54] to

nd an approximately optimal solution for the objective function
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Fig. 4. Some examples of text line segmentation. Page images are vertically projected onto x -axis to construct the projection profile. After that, line images are extracted 

based on the projection profile, following the method proposed in [53] . 

Fig. 5. Illustration of the notation for bounding box A and the subsequent adjacent bounding box B . c u t and c b t represent unary and binary outline geometric features of 

bounding boxes, respectively (see Eq. (3) for more detail). 
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q. (7) , i.e., the proposed BBS in Algorithm 1 . Through the pro-

osed BBS, we are able to efficiently merge the bounding boxes

Algorithm 1: Boundary box segmentation (BBS) 

Initialise : P ← { ∅ };
for n = 1 . . . N do ̂ P ← the W highest scored path in P ; 

P ← {} ; 
for y ∈ ̂

 P do 

S acc ( y + b n , n ) ← S acc ( y , n − 1) + S ss (b n ) ; 

Add y + b n to P ; 

if y � = ∅ then 

y ′ e ← y e ∪ b n ; 

S acc ( ̂  y + y ′ e , n ) ← S acc ( ̂  y , n − 1) + S ss ( y ′ e ) ; 
Add ˆ y + y ′ e to P . 

Return: max y ∈ P S acc ( y ) 

 = (b 1 , b 2 , . . . , b N ) into characters B 

′ = (c 1 , c 2 , . . . , c T ) for subse-

uent research. 

Although the recognition result of BBS is not as precise as those

ecognition-guided, it performs fast segmentation without consult-

ng character recognizer, and constitute a key component of Rg-

BBS. Furthermore, after assigning labels to the segmentation re-

ult of BBS, B 

′ = (c 1 , c 2 , . . . , c T ) , in order using text line annota-

ion, they can be used directly as input of incremental weakly

upervised learning, i.e., weakly labeled data pool as shown in

ig. 7 (a). 
.3. Recognition-guided boundary box segmentation (Rg-BBS) 

Character recognition score is very important in the pro-

ess of character segmentation, because it can provide informa-

ion indicating whether the character is appropriately segmented

22,23,32] . However, in practice, we found that deep-learning-

ased character recognizer sometimes provides high confidence

redictions for unrecognizable wrongly-segmented characters [55] .

o overcome this problem, we propose recognition-guided bound-

ry box segmentation (Rg-BBS) to incorporate text line annotation

s well as recognition score of character recognizer to facilitate

haracter segmentation. Specifically, Rg-BBS is to find the optimal

egmentation path y that has the optimal rationality in geomet-

ic structure and the highest posterior probability of being recog-

ized as text line annotation z = (z 1 , z 2 , . . . , z T ) given the path y

nd the text line image. Therefore, the objective function of Rg-BBS

an be transformed from the general objective function Eq. (4) as

ollows: 

 

∗ = arg max 
y , l 

log 

( 

T ∏ 

t=1 

p(l t | c u t ) p(l t−1 l t | c b t ) p(l t | c t ) 
) 

l = z = arg max 
y 

log 

( 

T ∏ 

t=1 

p(z t | c u t ) p(z t−1 z t | c b t ) p(z t | c t ) 
) 

= arg max 
y 

T ∑ 

t=1 

3 ∑ 

i =1 

λi ω ti , (8) 



276 Z. Xie, Y. Huang and L. Jin et al. / Neurocomputing 350 (2019) 271–281 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a  

a  

f

y

 

w  

r  

i  

n  

v  

t  

t  

w  

r

 

c  

‖

s  

t  

d  

r  

n  

d  

b  

a

where ω t 1 and ω t 2 are the same as those of BBS, ω t3 = log p(z t | c t )
indicates the recognition confidence score of the character rec-

ognizer. Unlike the general objective function Eq. (4) in which

class sequence l is unknown before segmentation, Rg-BBS sets

class sequence l as text line annotation z = (z 1 , z 2 , . . . , z T ) , so that

it only considers the characters of text line annotation z when

consulting character recognizer. For example, for the t th bound-

ing box in Eq. (8) , we require it to have the highest probability

of being recognized as the t th character in text line annotation

z . In Algorithm 2 , we provide detail algorithm based on beam

Algorithm 2: Recognition-guided BBS (Rg-BBS) 

Input : P ← { ∅ } ; 
Text line annotation z = (z 1 , z 2 , . . . , z T ) ;

Output : Predicted boundary boxes 

for n = 1 . . . N do ̂ P ← the W highest scored path in P ; 

P ← {} ; 
for y ∈ ̂

 P do 

t = ‖ y ‖ ; 
S acc ( y + b n , n ) ← 

S acc ( y , n − 1) + S ss (b n ) + λ3 P r(z t+1 , b n ) ; 

Add y + b n to P ; 

if y � = ∅ then 

y ′ e ← y e ∪ b n ; 

S acc ( ̂ y + y ′ e , n ) ← 

S acc ( ̂ y , n − 1) + S ss ( y 
′ 
e ) + λ3 P r(z t , y 

′ 
e ) ; 

Add 

ˆ y + y e to P . 

Return: max y ∈ P S acc ( y ) 

‖ y ‖ return merged bounding box number in path y . 

search to search for the approximately optimal segmentation path.

Algorithm 2 is adapted from Algorithm 1 by introducing text line

annotation and character recognizer. Note that P r(z t , c t = b n / y 
′ 
e ) in

Algorithm 2 denote the recognition confidence score of c t being

recognized as t th character in text line annotation z , and c t is t th

element of segmentation result of Rg-BBS, B 

′ = (c 1 , c 2 , . . . , c T ) . 

4.4. Recognition-guided attention boundary box segmentation 

(Rg-ABBS) 

Although BBS exhibits high efficiency in line image segmenta-

tion, its segmentation precision is not sufficient for application. Be-

sides, it completely neglect the character recognition information

as well as text line annotation during decoding. On the other hand,

Rg-BBS (see Eq (8) ) can incorporate character recognition informa-

tion to promote segmentation result, but waste much time on con-

sulting the character recognizer. 

In order to utilize the advantages of BBS and Rg-BBS while

discard their drawbacks, we develop recognition-guided atten-

tion boundary box segmentation (Rg-ABBS) to help system focus

only on the confusing parts. The idea behind Rg-ABBS is to inte-

grate character recognition precisely on the ‘attention’ area of the

text line image, where mis-segmentation problems usually occurs.

Therefore, how to identify an attention area becomes the key issue

in the character segmentation problem. Fortunately, BBS provide

us a coarse segmentation result B 

′ = (c 1 , c 2 , . . . , c T ) . By applying

our high-performance character recognizer (see Section 4.5 ) on B 

′ ,
we can derive their corresponding recognition result { R max (c t ) , t =
1 , 2 , . . . , T } , where R max ( c t ) denotes the highest prediction result.

Next, we can perform approximate string matching [44] to identify

the attention area by comparing R max ( B 

′ ) with text line annota-

tion z . Edit distance [45] is an ideal implementation of approxi-

mate string matching [44] and is adopted to explore the attention
rea B miss in this paper. The remainder area is denoted as matched

rea B match . Formally, the objective function for Rg-ABBS is trans-

ormed from Eq. (4) as follow: 

 

∗ = arg max 
y , l 

T ∏ 

t=1 

p(l t | c u t ) p(l t−1 l t | c b t ) p(l t | c t ) 

l = z = arg max 
y 

log 

( 

T ∏ 

t=1 

p(z t | c u t ) p(z t−1 z t | c b t ) p(z t | c t ) 
) 

ED = arg max 
y 

{ ∏ 

c t ∈ B match 

p(z t | c u t ) p(z t−1 z t | c b t ) 

+ 

∏ 

c t ∈ B miss 

p(z t | c u t ) p(z t−1 z t | c b t ) p(z t | c t ) 
} 

= arg max 
y 

{ ∑ 

c t ∈ B match 

2 ∑ 

i =1 

λi ω ti + 

∑ 

c t ∈ B miss 

3 ∑ 

i =1 

λi ω ti } 

= arg max 
y 

{ ∑ 

c t ∈ B match 

S ss (c t ) ︸ ︷︷ ︸ 
BBS 

+ 

∑ 

c t ∈ B miss 

{ S ss (c t ) + λ3 ω t3 } ︸ ︷︷ ︸ 
Attention Area 

} , (9)

here the left-side item 

∑ 

c t ∈ B match 
S ss (c t ) in Eq. (9) comes di-

ectly from the segmentation result of BBS and the right-side

tem 

∑ 

c t ∈ B miss 
{ S ss (c t ) + λ3 ω t3 } reveals how we incorporate recog-

ition information with geometry features. Next, Rg-ABBS is de-

eloped to find an approximately optimal solution for objec-

ive function Eq. (9) , as detailed in Algorithm 3 . Note that

he mismatched boxes and mismatched labels are represented

ith B miss = (c M 

, c M+1 , . . . , c M+ P ) and z miss = (z K , z K+1 , . . . , z K+ Q ) ,
espectively. 

To better illustrated the idea of Rg-ABBS, we provide a typi-

al example in Fig. 6 . Given the approximate segmentation re-

Algorithm 3: Rg-ABBS 

Input : Boundary boxes B miss = (c M 

, . . . , c M+ P ) ; 
mismatched labels z miss = (z K , . . . , z K+ Q ) ; 
P ← { ∅ } ; 

Output : Predicted boundary boxes 

for m = M . . . M + P do ̂ P ← the W highest scored path in P ; 

P ← {} ; 
for y ∈ ̂

 P do 

k = ‖ y ‖ ; 
S acc ( y + c m 

, m ) ← 

S acc ( y , m − 1) + S ss (c m 

) + λ3 P r(z (K+ k +1) , c m 

) ; 

Add y + c m 

to P ; 

if y � = ∅ then 

y ′ e ← y e ∪ c m 

;
S acc ( ̂ y + y ′ e , m ) ← S acc ( ̂ y , m − 1) + S ss ( y ′ e ) + λ3 Pr(z (K+ k ) , y ′ e ) ; 

Add 

ˆ y + y e to P ; 

Return: B match ∪ max y ∈ P S acc ( y ) 

 y ‖ return merged bounding box number in path y . 

ult B 

′ = (c 1 , c 2 , . . . , c T ) from BBS, we start by performing charac-

er recognition R max ( c t ) on each bounding box c t , with its confi-

ence score of class q denoted by Pr ( q, c t ). Next, we compare the

ecognition result { R max (c t ) , t = 1 , 2 , . . . , T } with the line-level an-

otation z = (z 1 , z 2 , . . . , z T ) of the historical line image using edit

istance [45] . Finally, we search for the new segmentation path

ased on recognition score of character recognizer and text line

nnotation z miss = (z K , z K+1 , . . . , z K+ Q ) . 
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Fig. 6. Illustration of the proposed Rg-ABBS. Given the rough segmentation result B 

′ = (c 1 , c 2 , . . . , c T ) from BBS, character recognition R max ( c t ) is applied to obtain the 

recognition result for each bounding box c t . Next, the recognition result { R max (c t ) , t = 1 , 2 , . . . , T } and the line-level annotation z = (z 1 , z 2 , . . . , z T ) is compared through 

edit distance [45] . The mismatched boxes and mismatched labels are represented with B miss = (c M , c M+1 , . . . , c M+ P ) and z miss = (z K , z K+1 , . . . , z K+ Q ) , respectively. Finally, we 

perform beam search to search for better segmentation path. Please refer to objective function Eq. (9) and Algorithm 3 for more details. 

Fig. 7. Illustration of the judgment gate (JG) mechanism and incremental weakly unsupervised learning for the character recognizer. 
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.5. Incremental weakly supervised learning 

To improve the accuracy of character segmentation, inte-

rating character recognition information during segmentation is

 straightforward yet useful approach. In the BBS stage, line

mages can be efficiently divided into character images B 

′ =
(c 1 , c 2 , . . . , c T ) , but the precision of this segmentation is not suf-

ciently high. This leads to the problem that when we allo-

ate labels to character images based on line-level annotation z =
(z 1 , z 2 , . . . , z T ) in order from top to bottom, i.e., z t → c t , if one po-

ition is mis-aligned, the remaining character annotations would

e wrong. Therefore, we can only construct a weakly labeled data

ool, as shown in Fig. 7 (a). We mush note that, in this character-

evel dataset, we do not know whether a character is correctly an-

otated, and mislabeled characters occupy a large proportion, pre-

enting us from training a sufficiently high-performance character

ecognizer. 

To solve this inaccurate supervision problem [48] , one solution

s to simply treat the mislabeled sample as noise label [49] . In

ur situation, mis-labeled samples are too large to be regarded as

oise label (nearly half of the characters are mis-labeled). Other re-

earchers proposed data editing method [51] to remove or relabel

uspected instances of mislabeling. However, these methods are

nstable in high-dimensional sparse-feature space. On the other
and, softmax confidence score has been verified to be a very use-

ul metric for determining the reliability of recognition results [56] .

i and Sethi [57] demonstrated that recognition confidence can be

sed to determine and correct wrongly labeled samples. 

Inspired by the aforementioned works, we aimed to explore

he predicted probability distribution of our character recognizer

o help identify and relabel suspected instances of mislabeling.

uring our experiments, we found that the first and second can-

idate of probability distribution carry most of the information:

1) when a character sample is correctly classified, the character

ecognition system always assigns not only the highest but also the

ast majority of the probability to the ground-truth class, while all

he remaining classes are all similarly small or negligible. (2) For

rongly classified samples, the second highest probability of the

redicted class is likely to be significantly larger than other classes.

herefore, we propose an incremental weakly supervised learning

trategy with judgment gate to train a character recognizer pro-

ressively, meanwhile rectifying the mislabeled samples. As shown

n Fig. 7 (d), we design a character recognizer with 2745 classes as

ollows: 

76 ∗ 76 Input − 32 C3 − MP 2 − 64 C3 − MP 2 − 128 C3 − 128 C3 −
P 2 − 256 C3 − 256 C3 − MP 2 − 384 C3 − 384 C3 − F C1024 −

 C2745 − Out put , where xCy represent convolutional layer with

ernel number of x and kernel size of y ∗ y, MPx denote max
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Fig. 8. Character recognizer F -score and CR (character recognition rate) of IoU val- 

ues ranging from 0.7 to 0.85 with respect to incremental weakly supervised learning 

iteration . The iteration represents the times we perform judgment gate mechanism, 

0 indicates that the judgment gate mechanism has not yet been executed while 

None means the character recognizer has not been applied. 

Table 1 

Character recognition performance with respect to judgment gate 

parameter α and β , and incremental weakly supervised learning 

iteration number. 

α 0.95 0.975 

β 0.05 0.025 0.0125 0.025 0.0125 0.00625 

1 95.55 95.48 95.21 95.21 95.21 95.19 

2 96.14 96.14 96.21 96.24 96.26 96.11 

3 98.71 98.84 98.77 98.81 98.80 98.69 

4 98.88 98.91 98.89 98.90 98.86 98.84 

Note that 1, 2, 3, and 4 represent incremental weakly supervised 

learning iteration number. 
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2 https://github.com/HCIILAB/TKH _ MTH _ Datasets _ Release . 
pooling layer with kernel size of x , and FCx is fully connected layer

of kernel number of x. 

Judgment gate (JG). As illustrated in Fig. 7 (c), the pro-

posed judgment gate consists of three components, includ-

ing sigmoid(μ1 (p f − α)) = 

1 

1 −e 
μ1 (p f −α) for evaluating the highest

probability p f of the softmax output of character recognizer,

sigmoid(μ2 (p s − β · p f )) = 

1 

1 −e 
μ2 (p s −β ·p f ) 

for evaluating the second

highest probability p s , and judgment evaluation obtained by multi-

plying these two components together and comparing with a given

threshold η: 

f JG = 

{
CONFIRM , � ≥ η
UNSURE , � < η

(10)

where � = sigmoid(μ1 (p f − α)) · sigmoid(μ2 (p s − β · p f )) , μ1 and

μ2 denote adapting parameters; α, β , and η are threshold param-

eters to guide the flow of the evaluation procedure. Specifically,

higher α values make the judgment gate more stringent in consid-

eration of the highest probability while higher β makes the judg-

ment gate put greater weight on the second probability. Together,

these values determine the judgment gate, confirming whether or

not the label of a sample is correct. The judgment gate guides the

training of a character recognizer in a dynamical manner by re-

labeling the wrongly labeled sample and confirming the correctly

labeled data incrementally. 

Next, we explain how we apply incremental weakly super-

vised learning to the training of the character recognizer, as shown

in Fig. 7 . First, the weakly labeled data pool in Fig. 7 (a) is ap-

plied to optimize the character recognizer, usually taking tens of

epochs. After the recognizer is sufficiently trained, the judgment

gate mechanism in Fig. 7 (c) classifies the samples into two cate-

gories, including CONFIRM where character samples are appended

to the confirmed data pool in Fig. 7 (b), as shown by yellow (re-

labeled) and orange (not re-labeled) outlined boxes and UNSURE

where character sample labels remain unchanged, as shown by

blue boxes. Lastly, we apply the confirmed data pool in Fig. 7 (b)

to update the weakly labeled data pool. Formally, we define the

abovementioned processes as a weakly supervised learning iteration .

As the iteration progresses, the weakly labeled data pool is up-

dated incrementally and the character recognizer is optimized ac-

cordingly. In practice, the learning process will continue until the

weakly labeled data pool is no longer changed or the re-labeled

samples number is within tolerance. Note that it is not easy to

decide whether a sample should be distinguished as CONFIRM or

UNSURE , because lower η in Eq. (10) will facilitate interfusion of

some wrong labeled samples into the confirmed data pool, while

higher η will make the optimization longer and convergence more

difficult. With the proper value of η, we can maintain the balance

between accuracy and efficiency, incrementally adding samples to

the confirmed data pool. 

Finally, after incremental weakly supervised learning, we man-

age to learn a high-performance character recognizer from the

weakly labeled data pool for Rg-BBS and Rg-ABBS. Experiments

show that system segmentation result highly relies on the perfor-

mance of character recognizer, which in return validates the effec-

tiveness of incremental weakly supervised learning. 

5. Experiments 

5.1. Dataset 

In the following experiments, a historical document dataset,

consisting of approximately 160,0 0 0 page-labeled images from the

Tripitaka Koreana in Han [58] , was downloaded from the Internet

to evaluate the proposed historical image segmentation system. Af-

ter preprocessing, we applied the proposed BBS algorithm to con-
truct the weakly labeled data pool consisting of 2745 classes. We

andomly selected 10,0 0 0 character images and made manual an-

otation to create a standard testing set for incremental weakly

upervised learning of the character recognizer. Furthermore, for

haracter segmentation evaluation, we manually annotated 10 0 0

ripitaka images, namely TKH Dataset [59] , 2 with 700 images for

raining and 300 for testing the segmentation methods. It is wor-

hy noting that these 700 training images is specially annotated for

eep-learning-based detection and instance segmentation meth-

ds, and not used for BBS, Rg-BBS, or Rg-ABBS. 

.2. Experimental results 

.2.1. Incremental weakly supervised learning 

In Fig. 8 , the x -axis represents the iteration number of the in-

remental weakly supervised learning of the character recognizer

hile the y -axis denotes the F -score or character recognition rate

CR). F -score is the harmonic mean of precision and recall. As illus-

rated in Fig. 8 , without the proposed incremental weakly super-

ised learning method, the character recognizer has a poor recog-

ition accuracy of 91.90%. When we applied incremental weakly

upervised learning, the performance of the character recognizer

radually improves as the weakly supervised learning iteration in-

reases, demonstrating the effectiveness of our incremental weakly

upervised learning mechanism. Furthermore, the performance of

he overall system has the same trend of character recognition pre-

ision under all IoU settings, which reflects the significance and

mportance of the recognition confidence information. Note that

hen the performance of the character model is relatively low,

.e., 91.90% at 0th iteration, our segmentation performs even worse

han the situation in which recognition confidence information is

ot introduced. This is because a low-performance character rec-

gnizer can easily assign a high confidence score to a wrongly

https://github.com/HCIILAB/TKH_MTH_Datasets_Release
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Table 2 

Segmentation results using different kinds of recognition information. (R, P, and F represent Recall, Precision, and F -score, respectively. F -score is the harmonic mean of 

precision and recall.) 

Method Runtime (ms/line) IoU 0.7 IoU 0.75 IoU 0.8 IoU 0.85 

R P F R P F R P F R P F 

baseline (BBS) 142 ± 36 88.24 85.76 86.98 84.21 82.07 83.13 81.21 80.18 80.69 74.21 73.41 73.81 

Rg-BBS 2257 ± 204 92.68 89.42 91.02 90.17 86.93 88.52 86.66 82.97 84.77 78.76 75.39 77.04 

Rg-ABBS w.o. text line annotation 538 ± 82 88.31 85.89 87.08 84.33 82.11 83.21 81.98 81.03 81.50 74.85 73.62 74.23 

Rg-ABBS 626 ± 124 92.63 90.56 91.58 90.15 88.13 89.13 86.54 84.61 85.56 78.80 77.04 77.91 

Table 3 

Comparison with previous methods. 

Method IoU 0.7 IoU 0.75 IoU 0.8 IoU 0.85 

R P F R P F R P F R P F 

Projection [19] 32.61 34.34 33.45 22.23 23.16 22.69 15.38 15.79 15.58 12.16 12.41 12.28 

Grouping [30] 26.60 21.07 23.51 15.73 10.93 12.90 15.02 10.81 10.87 14.08 9.97 11.67 

CCS [31] 75.51 76.42 75.96 70.63 71.48 71.05 62.21 62.96 62.58 45.37 45.92 45.64 

SS [60] 27.41 21.07 23.83 24.18 20.87 22.40 20.35 16.73 18.36 15.21 11.43 13.05 

ACF [42] 25.48 26.17 25.81 23.41 24.35 23.87 21.48 22.27 21.87 20.53 21.42 20.97 

R-fcn [43] 88.54 97.32 92.72 83.85 92.17 87.81 71.15 78.22 74.52 47.57 52.29 49.82 

SSD [37] 59.56 98.54 74.24 57.46 95.19 71.66 52.31 86.60 65.23 42.69 70.56 53.20 

YOLOv2 [36] 93.92 97.11 95.49 90.42 93.50 91.93 81.32 84.09 82.68 60.02 62.06 61.02 

TextBox [52] 56.46 98.51 71.78 53.72 91.02 67.56 48.58 84.77 61.77 42.29 79.26 55.15 

MNC [34] 90.70 91.22 90.96 86.17 84.66 85.41 76.29 76.73 76.51 56.14 56.45 56.29 

FCIS [33] 74.89 75.78 75.33 55.17 55.82 55.49 30.82 31.19 31.01 21.94 22.08 22.01 

BBS (ours) 88.24 85.76 86.98 84.21 82.07 83.13 81.21 80.18 80.69 74.21 73.41 73.81 

Rg-ABBS (ours) 92.63 90.56 91.58 90.15 88.13 89.13 86.54 84.61 85.56 78.80 77.04 77.91 
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egmented bounding box while assigning low confidence scores

o correctly segmented bounding boxes. This counter-example can

lso validate the importance of an excellent recognizer and the

eakly supervised learning strategy for our Rg-ABBS system. 

Judgment gate. In our experiment, we set parameters μ1 and μ2 

espectively to 1 and −1, with the parameter η as 0.25. As shown

n Table 1 , we investigate the parameter α and β under different

ettings with incremental weakly supervised learning over 4 iter-

tions (each iteration consists of 30 epochs). It can be observed

hat as the judgment gate becomes stricter (higher α and smaller

), the final performance of the character recognizer rises in the

eginning (from β = 0 . 05 to 0.025 when α = 0 . 95 ) and then de-

reases afterward (from β = 0 . 0125 , α = 0 . 95 to β = 0 . 00625 , α =
 . 975 ). This is because when the judgment gate becomes stricter,

e can obtain more accurately labeled samples; thus, the perfor-

ance of the trained character recognizer is better. However, when

he constraint becomes extremely strong, e.g., β = 0 . 00625 with

= 0 . 975 , there are not enough samples for the confirmed data

ool, especially for the rarely-used Chinese characters, and there-

ore the character recognizer will perform worse in this situation. 

.2.2. Recognition information evaluation 

In this section, we report an evaluation of recognition informa-

ion, including both character and text confidence scores, to esti-

ate their roles in the proposed Rg-BBS system. Note that for the

ollowing experiments, we set hyper-parameter λ1 , λ2 , and λ3 as

, 1, and 10, respectively. 

BBS. In Table 2 , it is observed that the proposed BBS has the

oorest performance but the fastest segmentation speed among

ll the listed methods. This is because BBS do not have to con-

ult the character recognizer. Considering the advantage of BBS, it

s applied to provide the coarse segmentation result for incremen-

al weakly supervised learning and constitute the basic component

g-ABBS. 

Rg-BBS. As illustrated in Algorithm 2 and Eq (9) , the pro-

osed Rg-BBS is constructed based on BBS by introducing char-

cter recognition information and text line annotation. As shown

n Table 2 , Rg-BBS enjoys an absolute recall/precision/ F -score im-
rovement of 3–5% for IoU values ranging from 0.7 to 0.85. How-

ver, Rg-BBS consumes much more time, nearly 16 times slower,

han that of BBS in the decoding process. 

Rg-ABBS. To utilize both the fast decoding speed of BBS and the

igh-precision decoding result of Rg-BBS, we proposed Rg-ABBS

hich use BBS as the basic decoding strategy and Rg-BBS for the

onfusing parts (attention area). As shown in Table 2 , Rg-ABBS not

nly substantially reduces the decoding time, but also keeps suffi-

iently high segmentation performance as compared to Rg-BBS. 

Rg-ABBS w.o. text line annotation. To evaluate the effectiveness

f text line annotation, we remove text line annotation informa-

ion from Rg-ABBS, and denote this situation as Rg-ABBS w.o. text

ine annotation . As shown in Table 2 , Rg-ABBS w.o. text line anno-

ation only shows slightly better the segmentation result than BBS.

his is because the character recognizer can easily assign a high

ecognition confidence score to a wrongly-merged bounding box

55] , e.g., some character-like radicals, while sometimes assigning

ow recognition confidence scores to correct bounding boxes. 

.2.3. Comparison with previous methods 

In Table 3 , we compare our approach with some well-

stablished existing methods, including traditional document seg-

entation methods such as Projection [19] , Grouping [30] , SS

60] and ACF [42] , deep-learning-based instance segmentation

ethods such as MNC [34] and FCIS [33] , and deep-learning-based

etection methods such as R-fcn [43] , SSD [37] , YOLOv2 [36] , and

extBoxes [52] . Note that for fair comparison, we use the bounding

ox of instance segmentation methods as their prediction in the

xperiments. As demonstrated in Table 3 , all the traditional meth-

ds obtain poor results for character segmentation, even when the

oU threshold is 0.7. This is due to the complex and complicated

ayout and background of the Tripitaka document. When the IoU

hreshold is set as 0.7 or 0.75, detection-based and segmentation-

ased methods dominate the best results. However, with the in-

rease of the IoU threshold, we can observe that segmentation re-

ults for all the methods are substantially reduced, and our meth-

ds exhibit superior results than all the others. Specifically, our

ethod can still provide an F -score of 77.91% with the rigorous
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requirement of an IoU threshold of 0.85, which reveals the fact that

the proposed Rg-ABBS method is likely to provide extremely pre-

cise segmentation. As illustrated in Fig. 3 , for historical image seg-

mentation purposes, only predicted bounding boxes with IoU equal

or greater than 0.8 are good enough, indicating that the adoption

of the proposed Rg-ABBS method is advisable for the segmentation

of historical documents, e.g., Tripitaka images. 

Considering the impressive performance of YOLOv2 on IoU of

0.7 and 0.75, we also combine the segmentation results of YOLOv2

and the proposed Rg-ABBS method by first aligning their predicted

bounding boxes, and then averaging the center positions, heights,

and widths of the matched boxes (IoU > 0.5), while leaving the

unmatched boxes remain in the final result. The ensemble model

strikes a trade-off between YOLOv2 and the proposed Rg-ABBS,

with F -score of 94.36, 90.20, 83.21, and 65.71 on IoU of 0.7, 0.75,

0.8 and 0.85, respectively. 

6. Conclusion 

In this paper, we formulate the challenging problem of his-

torical document image segmentation from a Bayesian decision

theory perspective. Towards high-precision segmentation, we pro-

posed three novel algorithms, including boundary box segmen-

tation (BBS), recognition-guided BBS (Rg-BBS), and recognition-

guided attention BBS (Rg-ABBS), progressively. Furthermore, we

propose an incremental weakly supervised learning strategy with

judgment gate (JG) mechanism for character recognizer training.

Experiments show that the proposed incremental weakly super-

vised learning strategy can substantially improve the performance

of the character recognizer as well as the final segmentation result.

We also observe that the proposed Rg-ABBS successfully integrates

the recognition information of character and line-level annotation

to facilitate the segmentation result while consuming much less

time and effort than Rg-ABBS. Compared with traditional and deep

learning based methods, the proposed recognition-guided segmen-

tation system exhibits superior performance for higher IoU thresh-

olds, which is crucial for reliable historical image segmentation. 
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