
CST
301

FORMAL
LANGUAGES AND

AUTOMATA
THEORY

Category L T P Credit
Year of

Introduction

PCC 3 1 0 4 2019

Preamble: This is a core course in theoretical computer science. It covers automata and
grammar representations for languages in Chomsky Hierarchy. For regular languages, it also
covers representations using regular expression and Myhill-Nerode Relation. The topics
covered in this course have applications in various domains including compiler design,
decidability and complexity theory, software testing, formal modelling and verification of
hardware and software.

Prerequisite: Basic knowledge about the following topic is assumed: sets, relations -
equivalence relations, functions, proof by Principle of Mathematical Induction.

Course Outcomes: After the completion of the course the student will be able to

CO1
Classify a given formal language into Regular, Context-Free, Context
Sensitive, Recursive or Recursively Enumerable. [Cognitive knowledge
level: Understand]

CO2
Explain a formal representation of a given regular language as a finite state
automaton, regular grammar, regular expression and Myhill-Nerode
relation. [Cognitive knowledge level: Understand]

CO3
Design a Pushdown Automaton and a Context-Free Grammar for a given
context-free language. [Cognitive knowledge level : Apply]

CO4
Design Turing machines as language acceptors or transducers. [Cognitive
knowledge level: Apply]

CO5
Explain the notion of decidability. [Cognitive knowledge level:
Understand]

Mapping of course outcomes with program outcomes

PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO1
0

PO11 PO1
2

CO1

4

COMPUTER SCIENCE AND ENGINEERING

CO2

CO3

CO4

CO5

Abstract POs defined by National Board of Accreditation

PO# Broad PO PO# Broad PO

PO1 Engineering Knowledge PO7 Environment and Sustainability

PO2 Problem Analysis PO8 Ethics

PO3 Design/Development of solutions PO9 Individual and team work

PO4
Conduct investigations of complex
problems

PO10 Communication

PO5 Modern tool usage PO11 Project Management and Finance

PO6 The Engineer and Society PO12 Life long learning

Assessment Pattern

Bloom’s
Category

Continuous Assessment Tests End Semester
Examination

Marks
Test 1 (Marks) Test 2 (Marks)

Remember 30 30 30

Understand 30 30 30

Apply 40 40 40

Analyze

Evaluate

Create

5

COMPUTER SCIENCE AND ENGINEERING

Mark Distribution

Total Marks CIE
Marks

ESE Marks ESE Duration

150 50 100 3 hours

Continuous Internal Evaluation Pattern:
Attendance : 10 marks
Continuous Assessment - Test : 25 marks
Continuous Assessment - Assignment : 15 marks

Internal Examination Pattern:

Each of the two internal examinations has to be conducted out of 50 marks. The first series test

shall be preferably conducted after completing the first half of the syllabus and the second

series test shall be preferably conducted after completing the remaining part of the syllabus.

There will be two parts: Part A and Part B. Part A contains 5 questions (preferably, 2 questions

each from the completed modules and 1 question from the partly completed module), having 3

marks for each question adding up to 15 marks for part A. Students should answer all questions

from Part A. Part B contains 7 questions (preferably, 3 questions each from the completed

modules and 1 question from the partly completed module), each with 7 marks. Out of the 7

questions, a student should answer any 5.

End Semester Examination Pattern:

There will be two parts; Part A and Part B. Part A contains 10 questions with 2 questions from

each module, having 3 marks for each question. Students should answer all questions. Part B

contains 2 questions from each module of which a student should answer any one. Each

question can have maximum 2 sub-divisions and carries 14 marks.

6

COMPUTER SCIENCE AND ENGINEERING

Syllabus

CST 301 Formal Languages and Automata Theory

Module - 1 (Introduction to Formal Language Theory and Regular Languages)

Introduction to formal language theory– Alphabets, Strings, Concatenation of strings,
Languages.

Regular Languages - Deterministic Finite State Automata (DFA) (Proof of correctness of
construction not required), Nondeterministic Finite State Automata (NFA), Equivalence of
DFA and NFA, Regular Grammar (RG), Equivalence of RGs and DFA.

Module - 2 (More on Regular Languages)

Regular Expression (RE), Equivalence of REs and DFA, Homomorphisms, Necessary
conditions for regular languages, Closure Properties of Regular Languages, DFA state
minimization (No proof required).

Module - 3 (Myhill-Nerode Relations and Context Free Grammars)

Myhill-Nerode Relations (MNR)- MNR for regular languages, Myhill-Nerode Theorem (MNT)
(No proof required), Applications of MNT.

Context Free Grammar (CFG)- CFG representation of Context Free Languages (proof of
correctness is required), derivation trees and ambiguity, Normal forms for CFGs.

Module - 4 (More on Context-Free Languages)

Nondeterministic Pushdown Automata (PDA), Deterministic Pushdown Automata (DPDA),
Equivalence of PDAs and CFGs (Proof not required), Pumping Lemma for Context-Free
Languages (Proof not required), Closure Properties of Context Free Languages.

Module - 5 (Context Sensitive Languages, Turing Machines)

Context Sensitive Languages - Context Sensitive Grammar (CSG), Linear Bounded Automata.

Turing Machines - Standard Turing Machine, Robustness of Turing Machine, Universal Turing
Machine, Halting Problem, Recursive and Recursively Enumerable Languages.

Chomsky classification of formal languages.

Text Book

1. Dexter C. Kozen, Automata and Computability, Springer (1999)

7

COMPUTER SCIENCE AND ENGINEERING

Reference Materials

1. John E Hopcroft, Rajeev Motwani and Jeffrey D Ullman, Introduction to Automata Theory,
Languages, and Computation, 3/e, Pearson Education, 2007

2. Michael Sipser, Introduction To Theory of Computation, Cengage Publishers, 2013.

Sample Course Level Assessment Questions

Course Outcome 1 (CO1): Identify the class of the following languages in Chomsky
Hierarchy:

• 𝐿𝐿1 = {𝑎𝑎𝑝𝑝 |𝑝𝑝𝑝𝑝𝑝𝑝 𝑎𝑎 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑛𝑛𝑛𝑛𝑝𝑝𝑛𝑛𝑝𝑝𝑝𝑝}

• 𝐿𝐿2 =

 {𝑥𝑥{0,1}∗|𝑥𝑥𝑝𝑝𝑝𝑝 𝑡𝑡ℎ𝑝𝑝 𝑛𝑛𝑝𝑝𝑛𝑛𝑎𝑎𝑝𝑝𝑏𝑏 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑡𝑡𝑎𝑎𝑡𝑡𝑝𝑝𝑟𝑟𝑛𝑛 𝑟𝑟𝑜𝑜 𝑎𝑎 𝑑𝑑𝑝𝑝𝑑𝑑𝑝𝑝𝑝𝑝𝑎𝑎𝑑𝑑 𝑛𝑛𝑛𝑛𝑝𝑝𝑛𝑛𝑝𝑝𝑝𝑝 𝑤𝑤ℎ𝑝𝑝𝑑𝑑ℎ 𝑝𝑝𝑝𝑝 𝑎𝑎 𝑝𝑝𝑛𝑛𝑑𝑑𝑡𝑡𝑝𝑝𝑝𝑝𝑑𝑑𝑝𝑝 𝑟𝑟𝑜𝑜5}

• 𝐿𝐿3 = {𝑎𝑎𝑛𝑛𝑛𝑛𝑛𝑛𝑑𝑑𝑛𝑛 |𝑛𝑛 ≥ 0}

• 𝐿𝐿4 = {𝑎𝑎𝑝𝑝𝑛𝑛𝑛𝑛𝑑𝑑𝑝𝑝+𝑛𝑛 |𝑝𝑝 > 0,𝑛𝑛 ≥ 0}

• 𝐿𝐿5 = {𝑀𝑀#𝑥𝑥|𝑀𝑀ℎ𝑎𝑎𝑑𝑑𝑡𝑡𝑝𝑝 𝑟𝑟𝑛𝑛𝑥𝑥}. Here, 𝑀𝑀 is a binary encoding of a Turing Machine and 𝑥𝑥 is a
binary input to the Turing Machine.

Course Outcome 2 (CO2):
(i) Design a DFA for the language 𝐿𝐿 = {𝑎𝑎𝑥𝑥𝑛𝑛|𝑥𝑥 ∈ {𝑎𝑎, 𝑛𝑛}∗}
(ii) Write a Regular Expression for the

language:𝐿𝐿 = {𝑥𝑥 ∈ {𝑎𝑎, 𝑛𝑛}∗|𝑡𝑡ℎ𝑝𝑝𝑝𝑝𝑑𝑑 𝑑𝑑𝑎𝑎𝑝𝑝𝑡𝑡 𝑝𝑝𝑏𝑏𝑝𝑝𝑛𝑛𝑟𝑟𝑑𝑑 𝑝𝑝𝑛𝑛 𝑥𝑥 𝑝𝑝𝑝𝑝 𝑛𝑛}
(iii) Write a Regular Grammar for the

language:𝐿𝐿 = {𝑥𝑥 ∈ {0,1}∗|𝑡𝑡ℎ𝑝𝑝𝑝𝑝𝑝𝑝 𝑎𝑎𝑝𝑝𝑝𝑝 𝑛𝑛𝑟𝑟 𝑑𝑑𝑟𝑟𝑛𝑛𝑝𝑝𝑝𝑝𝑑𝑑𝑛𝑛𝑡𝑡𝑝𝑝𝑣𝑣𝑝𝑝 𝑧𝑧𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝 𝑝𝑝𝑛𝑛𝑥𝑥}
(iv) Show the equivalence classes of the canonical Myhill-Nerode relation induced by the

language: 𝐿𝐿 = {𝑥𝑥 ∈ {𝑎𝑎, 𝑛𝑛}∗|𝑥𝑥𝑑𝑑𝑟𝑟𝑛𝑛𝑡𝑡𝑎𝑎𝑝𝑝𝑛𝑛𝑝𝑝 𝑝𝑝𝑣𝑣𝑝𝑝𝑛𝑛 𝑛𝑛𝑛𝑛𝑝𝑝𝑛𝑛𝑝𝑝𝑝𝑝 𝑟𝑟𝑜𝑜𝑎𝑎′𝑝𝑝 𝑎𝑎𝑛𝑛𝑑𝑑 𝑟𝑟𝑑𝑑𝑑𝑑 𝑛𝑛𝑛𝑛𝑝𝑝𝑛𝑛𝑝𝑝𝑝𝑝 𝑟𝑟𝑜𝑜𝑛𝑛′𝑝𝑝}.
Course Outcome 3 (CO3):
(i) Design a PDA for the language𝐿𝐿 = {𝑤𝑤𝑤𝑤𝑅𝑅|𝑤𝑤 ∈ {𝑎𝑎, 𝑛𝑛}∗}. Here, the notation 𝑤𝑤𝑅𝑅

represents the reverse of the string 𝑤𝑤.
(ii) Write a Context-Free Grammar for the language 𝐿𝐿 = {𝑎𝑎𝑛𝑛𝑛𝑛2𝑛𝑛 |𝑛𝑛 ≥ 0}.
Course Outcome 4 (CO4):
(i) Design a Turing Machine for the language 𝐿𝐿 = {𝑎𝑎𝑛𝑛𝑛𝑛𝑛𝑛𝑑𝑑𝑛𝑛 |𝑛𝑛 ≥ 0}
(ii) Design a Turing Machine to compute the square of a natural number. Assume that the

input is provided in unary representation.
Course Outcome 5 (CO5): Argue that it is undecidable to check whether a Turing

Machine 𝑀𝑀enters a given state during the computation of a given input 𝑥𝑥.

8

COMPUTER SCIENCE AND ENGINEERING

Model Question paper

QP CODE: PAGES:3

Reg No:______________ Name :______________

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

FIFTH SEMESTER B.TECH DEGREE EXAMINATION, MONTH & YEAR

Course Code: CST301

Course Name: Formal Languages and Automata Theory

Max.Marks:100 Duration: 3 Hours

PART A

Answer all Questions. Each question carries 3 Marks

1. Design a DFA for the language 𝐿𝐿 = {𝑥𝑥 ∈ {𝑎𝑎, 𝑛𝑛}∗|𝑎𝑎𝑛𝑛𝑎𝑎 𝑝𝑝𝑝𝑝 𝑛𝑛𝑟𝑟𝑡𝑡 𝑎𝑎 𝑝𝑝𝑛𝑛𝑛𝑛𝑝𝑝𝑡𝑡𝑝𝑝𝑝𝑝𝑛𝑛𝑠𝑠 𝑝𝑝𝑛𝑛 𝑥𝑥}.

2. Write a Regular Grammar for the language: 𝐿𝐿 = {𝑎𝑎𝑥𝑥𝑛𝑛|𝑥𝑥 ∈ {𝑎𝑎, 𝑛𝑛}∗}

3. Write a Regular Expression for the language:
𝐿𝐿 = {𝑥𝑥 ∈ {0,1}∗|𝑡𝑡ℎ𝑝𝑝𝑝𝑝𝑝𝑝 𝑎𝑎𝑝𝑝𝑝𝑝 𝑛𝑛𝑟𝑟 𝑑𝑑𝑟𝑟𝑛𝑛𝑝𝑝𝑝𝑝𝑑𝑑𝑛𝑛𝑡𝑡𝑝𝑝𝑣𝑣𝑝𝑝 1′𝑝𝑝 𝑝𝑝𝑛𝑛 𝑥𝑥}

4. Prove that the language 𝐿𝐿1 = {𝑎𝑎𝑛𝑛 !|𝑛𝑛 ∈ 𝑁𝑁} is not regular.

5. List out the applications of Myhill-Nerode Theorem.

6. Write a Context-Free Grammar for the language: 𝐿𝐿 = {𝑥𝑥 ∈ {𝑎𝑎, 𝑛𝑛}∗|#𝑎𝑎(𝑥𝑥) =

#𝑛𝑛(𝑥𝑥)}. Here, the notation #1(𝑤𝑤) represents the number of occurrences of the
symbol 1 in the string 𝑤𝑤.

7. Design a PDA for the language of odd length binary palindromes (no explanation
is required, just list the transitions in the PDA).

8. Prove that Context Free Languages are closed under set union.

9. Write a Context Sensitive Grammar for the language 𝐿𝐿 = {𝑎𝑎𝑛𝑛𝑛𝑛𝑛𝑛𝑑𝑑𝑛𝑛 |𝑛𝑛 ≥ 0} (no
explanation is required, just write the set of productions in the grammar).

9

COMPUTER SCIENCE AND ENGINEERING

10. Differentiate between Recursive and Recursively Enumerable Languages.
(10x3=30)

 Part B
(Answer any one question from each module. Each question carries 14

Marks)

11. (a) Draw the state-transition diagram showing an NFA 𝑁𝑁 for the following
language 𝐿𝐿. Obtain the DFA𝐷𝐷 equivalent to 𝑁𝑁 by applying the subset
construction algorithm.

 𝐿𝐿 = {𝑥𝑥 ∈ {𝑎𝑎, 𝑛𝑛}∗|𝑡𝑡ℎ𝑝𝑝 𝑝𝑝𝑝𝑝𝑑𝑑𝑟𝑟𝑛𝑛𝑑𝑑 𝑑𝑑𝑎𝑎𝑝𝑝𝑡𝑡 𝑝𝑝𝑏𝑏𝑝𝑝𝑛𝑛𝑟𝑟𝑑𝑑 𝑝𝑝𝑛𝑛 𝑥𝑥 𝑝𝑝𝑝𝑝 𝑛𝑛}

(7)

(b) Draw the state-transition diagram showing a DFA for recognizing the
following language:

𝐿𝐿 = {𝑥𝑥 ∈ {0,1}∗|𝑥𝑥 𝑝𝑝𝑝𝑝 𝑎𝑎 𝑛𝑛𝑝𝑝𝑛𝑛𝑎𝑎𝑝𝑝𝑏𝑏 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑡𝑡𝑎𝑎𝑡𝑡𝑝𝑝𝑟𝑟𝑛𝑛 𝑟𝑟𝑜𝑜 𝑎𝑎 𝑛𝑛𝑎𝑎𝑡𝑡𝑛𝑛𝑝𝑝𝑎𝑎𝑑𝑑

𝑛𝑛𝑛𝑛𝑝𝑝𝑛𝑛𝑝𝑝𝑝𝑝 𝑤𝑤ℎ𝑝𝑝𝑑𝑑ℎ 𝑝𝑝𝑝𝑝 𝑎𝑎multiple of 5}

(7)

 OR

12. (a) Write a Regular grammar 𝐺𝐺 for the following language 𝐿𝐿defined as: 𝐿𝐿 =

{𝑥𝑥 ∈ {𝑎𝑎, 𝑛𝑛}∗|𝑥𝑥𝑑𝑑𝑟𝑟𝑝𝑝𝑝𝑝 𝑛𝑛𝑟𝑟𝑡𝑡 𝑑𝑑𝑟𝑟𝑛𝑛𝑎𝑎𝑡𝑡𝑝𝑝𝑛𝑛 𝑑𝑑𝑟𝑟𝑛𝑛𝑝𝑝𝑝𝑝𝑑𝑑𝑛𝑛𝑡𝑡𝑝𝑝𝑣𝑣𝑝𝑝𝑛𝑛′𝑝𝑝}. (7)

(b) Obtain the DFA 𝐴𝐴𝐺𝐺 over the alphabet set 𝛴𝛴 = {𝑎𝑎, 𝑛𝑛}, equivalent to the regular
grammar 𝐺𝐺 with start symbol 𝑆𝑆 and productions: 𝑆𝑆 → 𝑎𝑎𝐴𝐴 and 𝐴𝐴 → 𝑎𝑎𝐴𝐴|𝑛𝑛𝐴𝐴|𝑛𝑛.

(7)

13. (a) Using Kleen’s construction, obtain the regular expression for the language
represented by the following NFA

(8)

(b) Using pumping lemma for regular languages, prove that the language
𝐿𝐿 = {𝑎𝑎𝑛𝑛𝑛𝑛𝑛𝑛 |𝑛𝑛 ≥ 0} is not regular. (7)

OR

10

COMPUTER SCIENCE AND ENGINEERING

14. (a) Obtain
the
minimum
-state
DFA
from the
following
DFA.

(8)

(b) Using ultimate periodicity for regular languages, prove that the language

𝐿𝐿 = {𝑎𝑎𝑛𝑛
2
|𝑛𝑛 ≥ 0} is not regular.

(6)

15. (a) Show the equivalence classes of the canonical Myhill-Nerode relation for the
language of binary strings with odd number of 1′s and even number of 0s.

(7)

(b) With an example, explain ambiguity in Context Free Grammar (7)

OR

16. (a) Convert the Context-Free Grammar with productions: {𝑆𝑆 → 𝑎𝑎𝑆𝑆𝑛𝑛|𝜖𝜖} into
Greibach Normal form.

(8)

(b) Convert the Context-Free Grammar with productions: {𝑆𝑆 → 𝑎𝑎𝑆𝑆𝑎𝑎|𝑛𝑛𝑆𝑆𝑛𝑛|𝑆𝑆𝑆𝑆|𝜖𝜖}
into Chomsky Normal form.

(6)

17. (a) Design a PDA for the language 𝐿𝐿 = {𝑎𝑎𝑝𝑝𝑛𝑛𝑛𝑛𝑑𝑑𝑝𝑝+𝑛𝑛 |𝑛𝑛 ≥ 0,𝑝𝑝 ≥ 0}. Also
illustrate the computation of the PDA on a string in the language

(7)

(b) With an example illustrate how a multi-state PDA can be transformed into an
equivalent single-state PDA.

(7)

OR

11

COMPUTER SCIENCE AND ENGINEERING

18. (a) Using pumping lemma for context-free languages, prove that the language:
𝐿𝐿 = {𝑤𝑤𝑤𝑤|𝑤𝑤 ∈ {𝑎𝑎, 𝑛𝑛}∗} is not a context-free language.

(6)

(b) With an example illustrate how a CFG can be converted to a single-state PDA (8)

19. (a) Design a Turing machine to obtain the sum of two natural numbers 𝑎𝑎 and 𝑛𝑛,
both represented in unary on the alphabet set {1}. Assume that initially the

tape contains ⊢ 1𝑎𝑎01𝑛𝑛♭
𝜔𝜔 . The Turing Machine should halt with ⊢ 1𝑎𝑎+𝑛𝑛♭

𝜔𝜔
as the tape content. Also, illustrate the computation of your Turing Machine
on the input 𝑎𝑎 = 3and 𝑛𝑛 = 2.

(7)

(b) With an example illustrate how a CFG can be converted to a single-state
PDA.

(7)

OR

20. (a) Design a Turing machine to obtain the sum of two natural numbers 𝑎𝑎and 𝑛𝑛,
both represented in unary on the alphabet set {1}. Assume that initially the

tape contains ⊢ 1𝑎𝑎01𝑛𝑛♭
𝜔𝜔 . The Turing Machine should halt with ⊢ 1𝑎𝑎+𝑛𝑛♭

𝜔𝜔
as the tape content. Also, illustrate the computation of your Turing Machine
on the input 𝑎𝑎 = 3and 𝑛𝑛 = 2.

(7)

(b) Write a context sensitive grammar for the language 𝐿𝐿 = {𝑎𝑎𝑛𝑛𝑛𝑛𝑛𝑛𝑑𝑑𝑛𝑛 |𝑛𝑛 ≥ 0}.
Also illustrate how the the string 𝑎𝑎2𝑛𝑛2𝑑𝑑2 can be derived from the start symbol
of the proposed grammar.

(7)

12

COMPUTER SCIENCE AND ENGINEERING

Teaching Plan

Sl.
No

Topic No. of
Hours
(45 hrs)

Module - 1 (Introduction to Formal Language Theory and Regular
Languages) 9 Hours

1.1
Introduction to formal language theory – Alphabets, strings, concatenation
of strings, Languages

1 Hour

1.2
Deterministic Finite State Automata (DFA) – Example DFA (Proof of
correctness of construction not required)

1 Hour

1.3 Formal definition of DFA, Language accepted by the class of DFA 1 Hour

1.4 Nondeterministic Finite State Automata (NFA) – Example NFA 1 Hour

1.5
Formal definition of NFA, NFA with 𝜖𝜖 transitions - examples, formal
definition

1 Hour

1.6
Equivalence of DFA and NFA with and without 𝜖𝜖 transitions - Subset
construction

1 Hour

1.7 Regular Grammar (RG) – Example RGs, derivation of sentences 1 Hour

1.8 Formal definition of RG, Language represented by a RG 1 Hour

1.9 Equivalence of RG and DFA 1 Hour

Module - 2 (More on Regular Languages) 9 Hours

2.1 Regular Expression (RE) - Example REs and formal definition 1 Hour

2.2 Conversion of RE to NFA with 𝜖𝜖 transition 1 Hour

2.3 Conversion of NFA with 𝜖𝜖 transition to RE (Kleen’s construction) 1 Hour

2.4 Homomorphisms 1 Hour

2.5 Pumping Lemma for regular languages 1 Hour

2.6 Ultimate periodicity 1 Hour

2.7 Closure Properties of Regular Languages (proof not required) 1 Hour

13

COMPUTER SCIENCE AND ENGINEERING

2.8 DFA state minimization - Quotient construction 1 Hour

2.9 State Minimization Algorithm - Example 1 Hour

Module - 3 (Myhill-Nerode Relations and Context Free Grammars) 10
Hours

3.1
Myhill-Nerode Relations (MNR) - Example, Properties of MyhillNerode
Relation

1 Hour

3.2 Conversion of DFA to MNR (Proof of correctness not required) 1 Hour

3.3 Conversion of MNR to DFA(Proof of correctness not required) 1 Hour

3.4 Myhill-Nerode Theorem (MNT) 1 Hour

3.5 Applications of MNT 1 Hour

3.6 Context Free Grammar (CFG) - Example CFGs and formal definition 1 Hour

3.7 Proving correctness of CFGs 1 Hour

3.8 Derivation Trees and ambiguity 1 Hour

3.9 Chomsky Normal Form 1 Hour

3.10 Greibach Normal Form 1 Hour

Module - 4 (More on Context-Free Languages) 8 Hours

4.1
Nondeterministic Pushdown Automata (PDA) – Example PDAs, formal
definition

1 Hour

4.2 Acceptance criteria - equivalence 1 Hour

4.3 Deterministic PDA 1 Hour

4.4 Conversion of CFG to PDA (No proof required) 1 Hour

4.5 Conversion of PDA to CGF - Part I (No proof required) 1 Hour

4.6 Conversion of PDA to CGF - Part II (No proof required) 1 Hour

4.7 Pumping Lemma for context-free languages (No proof required) 1 Hour

4.8 Closure Properties of Context Free Languages 1 Hour

14

COMPUTER SCIENCE AND ENGINEERING

Module - 5 (Context Sensitive Languages, Turing Machines) 9 Hours

5.1 Context Sensitive Grammar (CSG) - Examples, formal definition 1 Hour

5.2 Linear Bounded Automata (LBA) - Example LBA, formal definition 1 Hour

5.3
Turing Machine (TM) - TM as language acceptors - examples, formal
definition

1 Hour

5.4 TM as transducers - examples 1 Hour

5.5
Robustness of the standard TM model - Multi-tape TMs, Nondeterministic
TM

1 Hour

5.6 Universal Turing Machine 1 Hour

5.7 Halting Problem of TM - proof of its undecidability 1 Hour

5.8 Recursive and Recursively Enumerable Languages 1 Hour

5.9 Chomsky classification of formal languages 1 Hour

15

COMPUTER SCIENCE AND ENGINEERING

